
Autonomous Aerial Robot Using

Dual-fisheye System

by

Wenliang GAO

A Thesis Submitted to
The Hong Kong University of Science and Technology

in Partial Fulfillment of the Requirements for
the Degree of Master of Philosophy

in the Department of Electronic and Computer Engineering

August 2018, Hong Kong

Authorization

I hereby declare that I am the sole author of the thesis.

I authorize the Hong Kong University of Science and Technology to lend this thesis

to other institutions or individuals for the purpose of scholarly research.

I further authorize the Hong Kong University of Science and Technology to reproduce

the thesis by photocopying or by other means, in total or in part, at the request of other

institutions or individuals for the purpose of scholarly research.

Wenliang GAO

2 August 2018

ii

Autonomous Aerial Robot Using

Dual-fisheye System

by

Wenliang GAO

This is to certify that I have examined the above MPhil thesis

and have found that it is complete and satisfactory in all respects,

and that any and all revisions required by

the thesis examination committee have been made.

PROF. SHAOJIE SHEN, THESIS SUPERVISOR

PROF. BERTRAM SHI, HEAD OF DEPARTMENT

Thesis Examination Committee
1. Prof. Michael Yu Wang (Chairperson)

2. Prof. Shaojie Shen (Supervisor)

3. Prof. Fu Zhang

Department of Electronic and Computer Engineering

Department of Electronic and Computer Engineering

Department of Electronic and Computer Engineering

Department of Electronic and Computer Engineering
2 August 2018

iii

iv

ACKNOWLEDGMENTS

I really appreciate spending two years in HKUST. It would be part of my meaning life.

I would never have completed this work without the help from many people. First

of all, I thank my supervisor, Professor Shaojie Shen, for his years of mentoring, advice,

and encouragement. I have learned how to develop, evaluate, express, and defend my

ideas from him. They are important for my past and later study, research and working

in developing.

I thank my colleagues in UAV group. Tianbo Liu, Yi Lin, and Yonggen Ling, we talk

about the technology development and share a lot of ideas. Fei Gao, Kaixuan Wang,

Kejie Qiu, Peiliang Li, Tong Qin, and William Wu, we work together and help to build

up my knowleage system. Kaixuan Wang, Peiliang Li, we arrive at UST at the same time

and have finished several deadlines. In daily life, we have been good friends. Without

them, my graduate study and research at HKUST would not be so colorful.

I thank the members of my thesis committee, Professor Michael Yu WANG and Pro-

fessor Fu ZHANG, for their insightful comments on improving this work.

And I thank the DJI Technology Co. Ltd., which fund my research and study during

my graduate study.

Last but not least, I thank my parents, for their support, encouragement, and under-

standing.

v

vi

TABLE OF CONTENTS

Title Page i

Authorization Page ii

Signature Page iii

Acknowledgments v

Table of Contents vii

List of Figures xi

List of Tables xiv

Abstract xv

Chapter 1 Introduction 1

Chapter 2 Related Work 5

Chapter 3 System Overview 7

3.1 Hardware Architecture 7

3.1.1 Perception Core 7

3.1.2 Quadrotor Frame 9

3.2 Software Architecture 9

3.2.1 Algorithm Pipeline 9

3.2.2 Remote Monitoring and Debugging Interface 10

Chapter 4 Camera Model 13

4.1 Related Work 14

4.2 Polynomial-Based Fisheye Camera Model 14

4.3 Photometric Model 18

4.4 ROI extraction 21

vii

Chapter 5 Computer Vision on Sphere Images 25

5.1 Review of Sphere Images 25

5.2 Image Coordinate Evaluate 26

5.2.1 Parallax 26

5.2.2 Projection Error 27

5.3 Geometry Computer Vision 28

5.3.1 Depth 28

5.3.2 Epipolar Constraint 29

5.3.3 Homography 30

5.3.4 Triangulation 32

5.3.5 Perspective-n-Point 33

5.3.6 Structure From Motion 35

Chapter 6 Dual-Fisheye Visual-Inertial State Estimation 37

6.1 Related Work 37

6.2 Sliding Window Formulation 38

6.3 Measurement Preprocessing 39

6.3.1 Feature Processing Front-End 39

6.3.2 IMU Pre-Integration 40

6.4 Initialization 41

6.4.1 Visual Only Odometry in Sliding Window 42

6.4.2 Visual-Inertial Alignment 42

6.5 Tightly-Coupled Visual-Inertial Localization 44

6.5.1 Formulation 45

6.5.2 IMU Measurement Model 45

6.5.3 Camera Measurement Model 46

6.5.4 Marginalization 47

6.6 Parameter Selection 48

6.6.1 Vision Measurement Variance 48

6.6.2 IMU Variance 49

6.7 IMU Propagation for Feedback Control 50

Chapter 7 Dual-Fisheye Omnidirectional Dense Mapping 51

7.1 Related Work 51

7.2 Dual-Fisheye Omnidirectional Stereo 52

viii

7.2.1 Extrinsic Self-Calibration of Omnidirectional Stereo 53
7.2.2 Semi-Global Optimization 54
7.2.3 Post-Processing of Depth Images 56

7.3 Global Dense Mapping 56
7.3.1 Truncated Signed Distance Field (TSDF) 57
7.3.2 Uncertainty-Aware Fusion 58
7.3.3 Parallelization 59
7.3.4 Map Rendering for Visualization 59

Chapter 8 Experimental Results 61
8.1 Feedback Control Using Dual-Fisheye VINS 61
8.2 Dense Depth Estimation 62
8.3 Indoor Experiment 67
8.4 Autonomous Flight in Outdoor Environments 71

Chapter 9 Camera Calibration 77
9.1 Camera Intrinsic Calibration 77
9.2 Camera Vignetting Calibration 79
9.3 Camera Extrinsic Calibration 81
9.4 Camera Intrinsic Calibration with Screen 82
9.5 Calibration Results 87

9.5.1 Intrinsic Calibration Results 87
9.5.2 Vignetting Calibration Results 89
9.5.3 Extrinsic Calibration Results 91
9.5.4 Screen Calibration Results 94

Chapter 10 FSR:Fast Spherical Retina Keypoint 97
10.1Sampling on Unit Sphere 97
10.2Feature Detection 98

10.2.1 Accelerated Segment Test 98
10.2.2 Distort Patch 100

10.3Feature Descriptor 101
10.4Implementation and Experiment 101

10.4.1 Feature Detector 101
10.4.2 Feature Descriptor 103

Chapter 11 Conclusion 107
ix

References 108

x

LIST OF FIGURES

1.1 A closeup of our aerial robot platform, the two cameras are rigidly mounted
and face opposite directions. 2

1.2 The 2D illustration of the sensing area. 3

3.1 A synthetic and closeup of our aerial robot platform. 7

3.2 System diagram 10

4.1 Illustration of fisheye camera projection and lens. 13

4.2 The demonstration of the ultra-wide field-of-view (280-degree) image back
project to the unit sphere. The FOV range is figure out with circles. 14

4.3 The distortion of fisheye cameras. 16

4.4 The demonstration of the imaging intensity, influenced by lens system and
the sensor. 19

4.5 The demonstration of the vignetting. The top-left part is the raw image
and the bottom-right part is removed vignetting. 20

4.6 Illustrations of the ROI extraction process. 21

4.7 The illustration of the virtual gimbal 22

4.8 The illustration of the virtual electronic image stabilization 23

5.1 Projection from 3D point Pc to 2D point Pi . Back projection from 2D
point Pi to 3D point on the unit sphere Ps. Oc and Ocl are virtual points. 25

5.2 In the unit sphere S, the parallax of two image vector u and u′ is the
angle θd. 26

5.3 The illustration of different kinds of Projection Errors on the sphere. 27

5.4 Depth of sphere camera. 29

5.5 The illustration of epipolar constraint. 29

5.6 The illustration of homography. 30

5.7 The illustration of triangulation. 32

5.8 The illustration of Perspective-n-Point. 33

5.9 The illustration of Structure From Motion. 36

6.1 An example of the sliding window with four IMU states xj and four
features Pl. 38

6.2 Tracked features of overlapping regions. 39

6.3 Tracked features in the monocular regions. 40

6.4 Initialization features of overlapping regions. 43

6.5 An illustration of the camera measurement residual on the unit sphere. 47

xi

6.6 An illustration of the feature measurements. 48
6.7 The relationship map between the pixel domain and the error angle do-

main. 49
6.8 The Allan variance of a IMU. 50

7.1 Illustration of dual-fisheye omnidirectional stereo. 52
7.2 A general view of TSDF. 57
7.3 A reconstructed grid map with 0.05m resolution. 59
7.4 A reconstructed mesh map. 60

8.1 The trajectory compared VINS outputs with the motion capture. 62
8.2 The results compared VINS outputs with the motion capture. The top

four rows are translation and orientation values and their corresponding
error. The bottom row is the velocity plot. 62

8.3 Image of indoor experiments. 63
8.4 Results of the omnidirectional stereo. 64
8.5 Stereo reconstruction result using a pair of image from a single capture. 65
8.6 Indoor and outdoor experiments using SGBM for stereo matching. 66
8.7 The narrow environment in the indoor experiments. 68
8.8 The snapshots of the map and the trajectories during the flying mission. 69
8.9 Another experiment results in the same environments as in Fig. 8.8. 70
8.10 The raw grid map in a forest-like outdoor environment. 71
8.11 A experiment shuttling trees in the forest-like environments. 72
8.12 Autonomous navigation in a forest-like outdoor environments. 75
8.13 Autonomous flight test with an vison-based quadrotor. 75
8.14 Comparison of the flight corridor and the trajectory generated using the

dual fisheye cameras, and using the Velodyne LiDAR. 76

9.1 The collection images for the camera intrinsic calibration 78
9.2 The sample image of two times calibration. 79
9.3 The chessboard points detect outlier percentage via the field-of-view. 79
9.4 A sample image of vignetting calibration data. 81
9.5 A sample image of vignetting calibration data. 81
9.6 The points data distribution of screen calibration. 83
9.7 Screen calibration system. 83
9.8 The pipeline of screen calibration. 84
9.9 The raw images of screen calibration. 85
9.10 The illustration of lens projection. 85
9.11 The image of the projected point. 86

xii

9.12 The illustration of fisheye calibration. 87

9.13 The difference between design and calibration, less than 0.5%. 88

9.14 Fisheye camera intrinsic calibration result. 89

9.15 The reprojection error of some sample cameras. 90

9.16 Vignetting calibration results of color camera with three channels. 91

9.17 Sample of vignetting removed image. 92

9.18 Omnidirectional features matching for self-calibration. 93

9.19 Disparity map comparison with extrinsic parameters calibration. 93

9.20 The points data distribution of screen calibration of fisheye camera. 94

9.21 The reprojection error of the chessboard. 95

10.1 Patch of typical features. 97

10.2 3D graph of the resolution via pixels of the full image from the 240◦-FOV
camera, ◦/pixel. 97

10.3 The illustration of the distorted circle pattern in spherical images. 98

10.4 A negative-true case of the FAST feature detector ([63]). 99

10.5 The illustration of the mask of the green nucleus point of AST. Left: raw
mask; right: distorted mask. 99

10.6 The circular patches are distorted as ellipses. 102

10.7 The pattern of feature descriptor on the φ = 0 line. 103

10.8 The result sample of the feature detector of camera with 240-degree field
of view, same image with Fig. 10.4. 104

10.9 The feature match result between a spherical image and a pinhole image. 106

xiii

LIST OF TABLES

8.1 Approximated Timing Statistics 67

9.1 Vignetting Parameters of Mono Camera and Color Camera 90

9.2 Extrinsic Parameters of each Fisheye Camera 94

10.1 Approximated Timing Statistics 102

10.2 Performance of Feature Detector 102

10.3 Performance of Feature Descriptor 103

10.4 Time Cost of Feature Descriptor 104

xiv

Autonomous Aerial Robot Using

Dual-fisheye System

by

Wenliang GAO

Department of Electronic and Computer Engineering

The Hong Kong University of Science and Technology

ABSTRACT

Safety is undoubtedly the most important requirement in moving robots applications,

especially for micro aerial vehicles (MAVs). And both academia and industry have been

working hard to equip drones with GPS-free self-localization, obstacle sensing, and au-

tonomous navigation capabilities without prior information about the environments.

The fisheye cameras with ultra-wide filed-of-view (FOV) can provide more spherical

coverage of the surrounding environment. A dual-fisheye omnidirectional visual-inertial

navigation system (VINS) combine two fisheye cameras and an inertial measurement unit

(IMU), cover the whole surroundings of the MAV. It is the minimum sensor suite lending

the omnidirectional perception with lightweight and small footprint.

In this paper, we show that it is possible to achieve reliable online autonomous naviga-

tion with omnidirectional perception using dual-fisheye VINS. Our system is a quadrotor

equipped with two ultra-wide FOV fisheye cameras, which are rigidly mounted on two

sides of a rod and facing opposite directions, a low-cost IMU, and heterogeneous onboard

computing resources. The two fisheye cameras provide stereo observations with full 360-

degree FOV in the horizontal direction and 60-degree FOV in the vertical direction, also

provide full spherical monocular coverage of the surrounding situational awareness. Com-

bine a highly accurate optimization-based dual-fisheye visual-inertial state estimator with

online initialization and self-extrinsic calibration, three-dimensional map of the environ-

xv

ments can be built. And an online trajectory planner that operates guarantees the safe

navigation through cluttered environments in any direction. We provide experimental

results to validate individual system modules as well as the overall performance in both

indoor and outdoor environments.

xvi

CHAPTER 1

INTRODUCTION

The micro aerial vehicles (MAVs) are widely used in last decade. As ideal platforms

for numerous applications in indoor and outdoor environments, with their agile mobility,

small size and the cost is low. Some of them are capable of autonomous navigation. There

is no doubt that one of the most important requirements for autonomous navigation is

safety.

The most important requirements are range sensing, obstacle detection, and avoidance

for autonomous drones. Active range sensors such as LiDARs and radars are widely

used for mobile robots navigation around obstacles. However, active range sensors are

unsuitable for small-scale aerial robots, which have very tight cost and weight constraints,

unlike some larger platforms such as land robots. In these cases, vision-based approaches

are one of the viable options due to their excellent size, weight, and power (SWaP)

characteristics, especially monocular vision-based approaches. Monocular vision-inertial

systems using only one camera and an inertial measurement unit (IMU) is the smallest

setup satisfy the SWaP.

The dynamics of aerial robots such as quadrotor support the motion in multiple di-

rections. An aerial robot such as a quadrotor is able to However, the movements of

autonomous aerial robots are limited because of the lack of perception of multiple direc-

tions. The stereo vision systems or the monocular vision systems installed on existing

aerial robot system is often insufficient to guarantee the required perception ability be-

cause of the narrow field of view. To this end, much emphasis has to be placed on

the development of omnidirectional stereo vision systems for aerial robots using different

camera configurations.

To install more cameras on the aerial robots and construct multiple stereo systems is

the direct approach of the omnidirectional vision system, but this not only increases cost

but also results in tight constraints for structural design, also lead to huge computation

requirement. There exists extensive work focusing on dealing with multiple stereos, some

of them achieved with advanced FPGA [78, 25]. Using catadioptric cameras is economic

due to their panoramic view. Some omnidirectional vision systems are constructed with
1

Figure 1.1: A closeup of our aerial robot platform, the two cameras are rigidly mounted
and face opposite directions.

two convex reflective mirrors [24], with one camera and one convex reflective mirror [43],

or with plane mirrors [77]. However, the catadioptric cameras are not suitable for aerial

robots due to the size and the installation requirements.

For aerial robots, the omnidirectional vision systems need to be assembled with the

fewest number of components but achieve the best coverage.

In this work, we show the perception method which is able to provide omnidirectional

stereo vision formed by two ultra-wide (245-degree) field-of-view (FOV) fisheye cameras

installed facing opposite directions on a rigid rod. The configuration is developed and

installed on an aerial robot, shown in Fig. 1.1. And the sensing scope is shown in Fig. 1.2,

the hole 360-360-degree region are covered with the system. The blue area is the overlap-

ping of dual-fisheye stereo, the yellow area is the monocular vision coverage, the red area

is the blind spot and the gray area is the ground.

In this paper, we present a complete system solution to address all aforementioned

challenges. The system-level contribution is the proof of the feasibility of using the min-

imum dual-fisheye omnidirectional VINS and fully onboard processing to achieve safe

navigation through unknown cluttered environments. The decisions on each system mod-

ule, from hardware to software, are results from careful engineering considerations and

trade-offs. We choose to use a dual-fisheye camera system with IMU-triggered hardware

synchronization to provide wide-angle observations with precise time stamping. We use

a set of powerful heterogeneous onboard computing platforms for parallelizing the com-

putationally demanding per-pixel image operations.

At the level of software modules, our contributions are embedded into the choice of
2

Figure 1.2: The 2D illustration of the sensing area.

suitable real-time algorithms that are either developed specifically for this work, or are

improved from our previous works. The backbone of our algorithm package is a high-

accuracy, tightly-coupled, optimization-based dual-fisheye omnidirectional visual-inertial

state estimator with fisheye camera support, online initialization, and camera-IMU extrin-

sic calibration. A plane-sweeping-based multi-view depth estimation module, in combina-

tion with semi-global (SGM) depth smoothing, provides real-time dense depth images for

obstacle detection. The depth images are fused into a global 3D map using a probabilistic

truncated signed distance function (TSDF) fusion. Finally, a gradient-based trajectory

planning module, which directly operates on the reconstructed 3D map, provides collision-

free trajectories through cluttered 3D environments. The perception-action loop is closed

by executing the desired trajectory using a standard multi-rotor controller. To the best of

our knowledge, we are the first to achieve such navigation capability using this minimum

sensor suite. This work points out an direction towards autonomy for very small (less

than 10 centimeters in diameter) aerial vehicles.

The rest of this paper divides into eight parts. System-level related works are briefly

discussed in Sect. 2. Sect. 3 gives an overview of our system in both hardware and

software architectures. Sect. 4 and Sect. 5 discusses how we use the fisheye camera.

State estimation and dense 3D mapping modules are presented in Sect. 6 and Sect. 7,

respectively. Online experimental results (Sect. 8) verify the performance of individual

modules, as well as the integrated system. We show autonomous navigation in both indoor

and outdoor environments. Sect. 11 concludes this work and points out possible directions

for future improvements, where we aim to extend our framework towards systems with

higher speed, lower power consumption, smaller size, and lower cost.

3

4

CHAPTER 2

RELATED WORK

There are numerous scholarly works focus on autonomous movements in GNSS-denied

environments based on vision system. Some of them premeditate the omnidirectional

perception sensing. In this section, we review some omnidirectional sensing systems and

some relevant system-level autonomous navigation works using visual sensing modalities.

Vision-based methods autonomous navigation have been developed in last decade. In

our previous work [44], we have investigated the probability of the minimum sensing setup

for autonomous perception, localization, navigation, and obstetrical avoidance. Which is

a monocular visual-inertial system only combine with one camera and one IMU. Using a

monocular visual-inertial navigation system and a GPU-accelerated monocular mapping

approach, the environments can be constructed and the three-dimensional map satisfy

autonomous motion planning. Similar works are introduced in [13, 18]. In [67], the

authors implement the MAV with three onboard computing units: an Intel Core2Duo for

visual odometry, mapping, and planning, an FPGA for real-time stereo-matching, and

Gumstix for real-time embedded tasks. With a loosely-coupled visual-inertial extended

Kalman filter (EKF) state estimation and the Octomap [30], the MAV is able to fly by

an obstacle-free path. And in [20], the authors also show a vision-based mapping and

planning framework with one front-ward stereo and a down-ward optical flow camera.

In [17], the authors shows an MAV based on the SVO [19] and REMODE [60]. The

MAV can fly autonomously and provide real-time dense 3D reconstruction. Due to the

narrow sensor, only a downward camera for both state estimation and mapping, the ob-

stacle detection and avoidance is weak in cluttered environments. Most works deploy

mapping module on a ground station or off-board [17, 10, 16]. Another direction of

research comprise the use of learning-based approaches for end-to-end generation of nav-

igation operations, such as [23, 53]. It is a promising inspiration to reach the level of

maturity for safe flight in unknown environments.

However, most of exist works are based on stereo cameras and monocular cameras

with narrow FOV so that the sensing scope is limited.

5

It is a direct idea to equip more sensors to cover a wider perception scope. In [25], the

authors installed eight cameras on the aerial robots and construct multiple stereo systems

to form an omnidirectional vision system directly. And in [78], the authors developed

a product with ten cameras, an IMU and five ultrasonic range finders which construct

an omnidirectional visual-inertial system. Both these methods process the data with

advanced FPGA due to the huge computation requirement. Such configuration is used

in Skydio R1 1, an commercial autonomous flight MAV equipped with 12 sensing camera

construct 6 pairs of stereos facing to six directions, with GPU-accelerated approaches.

An omnidirectional stereo system configured with two specially designed mirrors and

one camera was shown in [38] and an improved version is presented in [34] with a focus

on size reduction and calibration. The system was installed on a quadrotor micro aerial

vehicle in [34] but without a perfect demonstration of flying test. This system is not

suitable for deployment on small aerial robots due to its special configuration and the

wast of onboard space of an aerial robot. Also, it is hard to get 3D information due to

the complexity in calibrating the extrinsic parameters of the specially designed mirrors.

Processing regions of the different spatial resolution from upward- and downward-facing

mirrors in one image is also a challenging problem, and the narrow vertical FOV limits

its usage for safe robotic navigation.

In our work, however, we show how only two cameras is sufficient to achieve the whole

sphere space perception and omnidirectional sensing and miniaturize the platform. The

system achieve autonomous localization, navigation, mapping and obstetrical avoidance

and all of process are onboard.

1https://www.skydio.com/

6

CHAPTER 3

SYSTEM OVERVIEW

Figure 3.1: A synthetic and closeup of our aerial robot platform.

We now present the hardware design and the software architectures of our quadrotor

experimental testbed. We address requirements in sensor selection, sensor synchroniza-

tion, distribution of computing power, monitoring, and debugging tools, experimental

interfaces, and modular system designs. We will explain the rationale behind each of our

system design decisions along with the descriptions of system modules.

3.1 Hardware Architecture

We aim to design a modular, compact, durable, and easy-to-construct aerial robot testbed.

Our airborne system consists two main modules, the Perception Core and the Quadrotor

Frame. The perception core integrates onboard computers and sensors, and the quadrotor

frame consists of the mechanical construction, motors, propellers, and the battery.

3.1.1 Perception Core

The perception core is a detachable module that houses all computing and sensing modal-

ities. It enables independent testing of the state estimation and mapping modules and

can be used with other mechanical frames.
7

We use two computers to form a powerful heterogeneous computing platform. One is

a mini computer that is powered by a quad-core Intel i7-8500U processor running up to

4.00 GHz 1. It is equipped with 8 GB memory and 128 GB SSD, and consumes around 15

watts of power. This is the primary computer for system scheduling and for performing

tasks that cannot be parallelized (Fig. 3.2). Another computer onboard is a NVIDIA

TX2, which is assembled by a core2 on a carrier board. The 256 NVIDIA CUDA GPU

cores on the TX2 make it particularly suitable for parallel computing of depth images and

TSDF fusion. The TX2 is equipped with a six-core ARM Cortex-A57 processor and 8 GB

memory and consumes approximately 15 watts of power. The two onboard computers

are connected using Ethernet cable. Communication between two computers is done by

utilizing the ROS infrastructure3.

Our onboard computing resources cover most of the widely used development plat-

forms - x86, ARM, and GPU, making it highly flexible for the development of advanced

algorithms. It significantly reduces the development cycle since researchers do not need

to spend excessive amount time on code-level optimization.

The onboard visual sensors include two PointGrey Chameleon3 Mono USB3 cameras4

with 240-degree ultra-wide FOV fisheye lens, both with a 1280×1024 resolution. The two

cameras are rigidly mounted and face opposite directions. A DJI A3 flight controller5 is

used both as the IMU and attitude stabilization controller. The main elements are shown

in Fig. 3.1, they are: (1) Mini i7 computer; (2) NVIDIA TX2; (3) Upward camera; (4)

Downward camera. We disable the GPS and magnetometer functionalities in A3 due to

their lack of reliability in cluttered indoor environments.

Accurate timestamps are required for high-performance visual-inertial fusion. In our

system, this is achieved via hardware synchronization, where individual image capture is

triggered by synchronization signals from the DJI A3 flight controller. More specifically,

we utilize the triggering model in the Hardware Real-Time Controller of the camera. The

DJI Onboard SDK6 provides an interface for generating a bundle of the pulse signal and

the corresponding IMU measurements. Note that that IMU runs at a higher frequency
1https://ark.intel.com/products/122589/Intel-Core-i7-8550U-Processor-8M-Cache-up-to-4_

00-GHz
2https://developer.nvidia.com/embedded/develop/hardware
3http://wiki.ros.org/
4https://www.ptgrey.com/chameleon3-13-mp-mono-usb3-vision-board-level-on-semi-python-1300
5http://www.dji.com/a3
6https://developer.dji.com/onboard-sdk/

8

than the camera, and an IMU measurement will be tagged if it corresponds to an image.

Only one additional cable is required to form the hardware synchronization setup.

3.1.2 Quadrotor Frame

The quadrotor frame consists of the mechanical construction, motors, propellers, and

the power supply module. The frame is built with carbon fiber tubes and aluminum

components, making it light but durable. The whole system is shown in Fig. 3.1. The

total weight, including the perception core, is 1.8 kg. Tip-to-tip distance is 33 cm. We

use the DJI E3107 motors and the DJI Takyon Z425-M8 ESCs as the lifting system. We

use the intelligent battery of DJI Phantom 4 Pro9 to provide approximately 15 minutes of

flight time. A DJI Lightbridge 210 is used for the implementation of the remote desktop

functionality on the iPad.

3.2 Software Architecture

The software architecture of our system is shown in Fig. 3.2. Utilizing ROS as the commu-

nication middleware, we distribute computation loads among the two onboard computers

under the principle that dense pixel-wise operations should be performed on the NVIDIA

TX1. The two onboard computers are connected using Ethernet.

3.2.1 Algorithm Pipeline

On the Mini i7 computer, 400Hz IMU measurements, as well as the 20Hz synchronized

fisheye images, are fused in the visual-inertial state estimator (Sect 6) to obtain pose,

velocity, and attitude for dense mapping, trajectory planning, and feedback control. The

estimator output at 400Hz, which is sufficient for feedback control of agile aerial robots.

We use a region-of-interest (ROI) extraction module (Sect. 4.4) to crop the two fisheye

images into eight pinhole images to cover the 360-degree horizontal FOV. Pinhole images

are then bundled with the estimated pose and sent to the TX2 for depth estimation.

7http://www.dji.com/cn/e310
8http://www.dji.com/takyon-z425-m-and-z415-m
9http://store.dji.com/product/phantom-4-pro-intelligent-battery-high-capacity

10http://www.dji.com/cn/lightbridge-2

9

Figure 3.2: System diagram

Utilizing the GPUs onboard the NVIDIA TX2, depth images are computed at 10Hz

using dense semi-global smoothing. Depth images are turned into a global map using

GPU-accelerated truncated signed distance function (TSDF) fusion, also running at 10Hz

in (Sect. 7).

The global map is sent back to the Mini i7 computer to assist trajectory planning,

in which collision-free time parameterized trajectories that guide the robot towards user-

specified goals are generated. The trajectory is executed using the attitude and thrust

control interface in the DJI A3 flight controller.

Unlike many existing systems that relies on a downward-facing camera or a frontward-

facing camera for state estimation, our system uses two camera to satisfy the omnidirec-

tional sensing needs. We show through online indoor and outdoor experiments (Sect. 8)

that our minimal sensing setup is sufficient to achieve complete autonomous navigation.

3.2.2 Remote Monitoring and Debugging Interface

Besides the airborne software, we also utilize the DJI Lightbridge 2 to implement an iOS

app for remote monitoring and debugging. The Lightbridge directly streams the HDMI

output of the Mini i7 computer to an iPad Pro11. This enables us to view the desktop

in real-time even when the robot is flying. In this way, we are able to directly use the

11http://www.apple.com/ipad-pro/

10

iOS app to run visualization tools such as rviz on the airborne computer. It even enables

us to debug and recompile the airborne code while the quadrotor is flying. This setup

is independent of any external infrastructure, which makes it very convenience for field

tests.

11

12

CHAPTER 4

CAMERA MODEL

For an autonomous aerial robot system, a wide sensing field of the environment ob-

servation is able to assist dynamic estimation and mapping. Therefore, we use only two

fisheye cameras, which provides sight from all of directions: frontward, backward, upward,

downward, leftward and rightward. With an ultra-wide field of view, the visual-inertial

navigation system is able to keep tracking features even in high dynamic movement and

the mapping system can perform a wide-field mapping. The general camera models are

purposed for the ordinary perspective camera with limited FOV. However, a ultra-wide

FOV model is required in this system. We proposed a camera model to fit the distortion

as a polynomial considering the distortion curve from the manufacturer. Such model is

accuracy enough and suitable for the ultra-wide FOV fisheye cameras.

In Sect. 4.2, we review some well-known camera models, then introduce the polynomial-

based fisheye camera model which we used. In Sect. 9.1, we simply introduce the calibra-

tion. In Sect. 4.4, we show one way to use a fisheye camera: ROI extraction.

(a) Illustration of fisheye camera
projection.

(b) Illustration of fisheye lens.

Figure 4.1: Illustration of fisheye camera projection and lens.

13

Figure 4.2: The demonstration of the ultra-wide field-of-view (280-degree) image back
project to the unit sphere. The FOV range is figure out with circles.

4.1 Related Work

There exists extensive scholar work focusing on dealing with distortion, especially radial

distortion of cameras. The radial distortion was traditionally modeled as an odd-order

polynomial in [7]. But for a fisheye camera, the distortion is so significant that traditional

models that are designed for pinhole cameras do not work well. Several models have

been proposed to solve the problem, such as the fisheye transform [68], the polynomial

fisheye transform [3], the FOV model [12], and the division model [6]. A comparison to

these camera models is presented in [32]. [22] pioneers the modeling of catadioptric om-

nidirectional cameras with a convex mirror. It was further developed into [52], and [66]

to process both catadioptric and fisheye cameras. However, all aforementioned camera

models are lens-independent. Due to the use of highly distorted pixels for stereo corre-

spondence, an accurate mapping from the raw image to a unit sphere is required. This

requires sufficient representation capabilities of the camera model that are unachievable

in a lens-independent setting.

4.2 Polynomial-Based Fisheye Camera Model

The camera projection model is a function π : R3 → Ω, which models the relationship

between the 3D points and the image domain. The back projection model π−1 : Ω→ R3

is its inverse process. Fig. 4.1(a) presents the projection course. A 3D point observed by

14

the fisheye camera in the camera frame Pc = [xc, yc, zc]
T ∈ R3 projects to the image plane

as u = [u, v]T ∈ Ω; Oc is the origin of the camera frame and OcOcl is the abstract of the

lens. As Fig. 4.1(b) shows, in a particle lens, there are no 3D points Oc and Ocl that all

the incident and refracted rays go through. The camera frame whose origin is at a virtual

point Oc can be built since the error can be ignored with the small lens size. We do not

focus on what happens during a ray passing through the lens so we ignore the details

of OcOcl. S is a unit sphere with center coinciding with the origin of the camera frame,

which also describes the FOV: an 180-degree FOV lens with a half sphere. An incident

ray can be formulated as a unit vector Ps = [sinθcosϕ, sinθsinϕ, cosθ]T , instant of
−−−→
PsOc,

since the reversibility of ray. Where ϕ is the angle between the x positive axis and the

ray, and θ is the angle between ray vector and optical axis vector. θi is the angle of the

incident ray Ps, and θr is the angle of the refracted ray
−−→
Oclu.

There are many works focus on dealing distortion, especially the radial distortion of

cameras. The radial distortion was constantly modeled by an odd-order polynomial in [7],

but for a fisheye camera, the distortion is so huge that the general model cannot describe

it well. Several models have been put forward to solve the problem, such as the fisheye

transform [68], the polynomial fisheye transform [3], the FOV model [12] and the division

model [6]. Additionally, some works have compared these camera model methods [32].

A similar problem of catadioptric system due to the similar projection and huge dis-

tortion. A different model was proposed [22] to model the projection of an omnidirectional

camera with a convex mirror. That model was further developed [52], [66] so that it is

able to fit either an omnidirectional camera or fisheye camera. Though, these models are

accurate, they are complex or unsuitable for the ultra-wide FOV fisheye cameras. For

computer vision, a precise 3D-to-2D mapping table is more suitable as it is model-free

and can include all of errors, although it is hard to build. In this paper, we propose

a camera model considering the design data for radially symmetric lens with ultra-wide

field of view.

Optically, for any radially symmetric lens system, there are three essential assump-

tions: (1) any ray that goes through the optical axis will not change its direction; (2) with

the increasing of the incident angle θi, the refracted angle θr is monotone and continuously

increasing; and (3) the refracted rays will be radially symmetric if the related incident rays

are radially symmetric, which means for any ray with the same θi, its θr is the same. With

this three assumptions, the camera model needs to formulate the relationship between the

15

0 0.5 1 1.5 2 2.5

Incident angle (rad)

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
F

-T
h

e
ta

 d
is

to
rt

io
n

 (
%

)

(a) “F-Theta” distortion curve of
a lens with a 245-degree FOV.

0 0.5 1 1.5 2 2.5

incident angle(rad)

0

0.5

1

1.5

2

2.5

ra
d

ia
l
d

is
ta

n
c
e

(m
m

)

equidistant model

design radial distance

polynomial fitted radial distance

calibrated radial distance

(b) Projected radial distance of a
lens with a 245-degree FOV.

0 0.5 1 1.5 2 2.5

Incident angle (rad)

-1

-0.5

0

0.5

1

E
rr

o
r

o
f

R
 (

m
m

)

×10
-4

(c) Radial error of a lens with
245-degree FOV.

Figure 4.3: The distortion of fisheye cameras.

incident angle θi and refracted rays for a radially symmetric lens.

Regard that R(θ) = |
−−→
Oiu| is the projected radial distance from the principal point on

the image plane with the incident angle θ, andRref (θ) is a reference radial distance, which

is referenced by a designed model, also formulated with θ. DefineRerr(θ) = R(θ)−Rref (θ)

as the radial error. In an optical system, define distortion as

D(θ) = Rerr(θ)

Rref (θ)
× 100%. (4.1)

If the reference radial distance is defined as

Rref (θ) = fθ, (4.2)

its distortion is called “F-Theta” distortion [75], as Fig. 4.3(a) shows, and this reference

projected radial distance also formulates an equidistant model of the fisheye camera. For

an optical system, the ideal “F-Theta” distortion can almost be accurately given by its

designers thanks to optical design software products such as ZEMAX1 or Code-V2, which

are able to perform an accurate ideal ray tracing simulation. The calibration process is

to correct the real distortion with the manufactured error reference from the designed

distortion. Fig. 4.3(a) shows the “F-Theta” distortion curve of one of our lenses with a

245-degree FOV. Our proposed model describes the distortion curve with a continuous

smooth function D(θ) of the incident angle θ, such as a polynomial.

For the essential optical assumption, we should fit the relationship between θi and θr,

but this requires some extra calculation during projection. We fit the distortion curve
1http://www.zemax.com/
2https://optics.synopsys.com/codev/

16

and describe the relationship between θi and R(θ). In this paper, we use a high-order

polynomial to fit the “F-Theta” distortion curve D(θ). With (4.1) and (4.2), the real

projected radial distance can be formulated as

R(θ) = [1 +D(θ)]Rref (θ) = [1 +D(θ)]fθ = f

N∑
i=0

ηiθ
i. (4.3)

In the N order polynomial
∑N

i=0 ηiθ
i, there is η0 = 0, η1 = 1 from (4.3), so two of the

coefficients are fixed. We use a 7 order polynomial to fit the fisheye camera. As Fig. 4.3(a)

show lens, the comparison of the projected radial distance is shown in Fig. 4.3(b), and

the projected radial distance error between the fitted and real one is small enough as

Fig. 4.3(c) show.

As the projection shows in Fig. 4.1(a), there are three main steps for one 3D point in

a world frame project to image: 3D point becoming a unit ray vector Pc →
−−−→
PsOc, ray

refraction
−−−→
PsOc →

−−→
O′

cu and ray projection
−−→
O′

cu→ u.

(1) A 3D point in the camera frame is transformed to a ray vector and the vector is

normalized as

−−−→
PsOc =

−−−→
PcOc

||
−−−→
PcOc||

. (4.4)

Transform this unit vector to spherical coordinates in the camera frame, and get the

incident angle θ by

cos(π − θ) =
−−−→
PsOc ·

−−−→
OiOc = zs,

tan(−ϕ) = ys
xs

,
(4.5)

where
−−−→
PsOc = [xs, ys, zs]

T ,
−−−→
OiOc is the optical axis vector. Especially if xs = 0, ϕ = 0.

(2) Fit the real projected radial distance Ri(θ) up-to-scale of focal length:

R(θ) =
N∑
i=0

ηiθ
i. (4.6)

(3) With the focal length in the pixel unit f , the real projected radial distance in the

pixel is R(θ) = fRi(θ). Then the image coordinate can be obtained directly:

u = R(θ)
[
cos(ϕ)
sin(ϕ)

]
+

[
cx
cy

]
, (4.7)

17

where [cx, cy]
T is the image point whose incident angle θ = 0. Since the rotation between

the lens and the CMOS chip, the focal length is not the same in different directions thus

the real projected radial distance will be projected onto a 2D plane and described by an

affine transformation. An individual focal length f is replaced by a 2 × 2 affine matrix

Af =

[
A11 A12

0 A22

]
. Above of all, combine (4.4) to (4.7) to get

u =
∑
i

ηiθ
iAf

[
cos(ϕ)
sin(ϕ)

]
+

[
cx
cy

]
. (4.8)

The function of the camera projection model π(·) is (4.5) and (4.8). This formulation

is similar to the pinhole model but is suitable for almost all kinds of cameras whose

projection is radially symmetrical. The radial distortion is well described in (4.6), and

we refuse to model the tangential distortion because, by [35], the tangential distortion of

most lenses is quite small due to the improvements of optical manufacture.

In the back projection model π−1(·), the high-order polynomial
∑

i ηiθ
i may have

several roots, which may be real or complex, and cannot have analytical solutions. the

speed of solving the root is slow since the computation of the root requires numerical

approaches. For real-time applications, we may use another high-order polynomial fitting

or piecewise linearization approach to accelerate the calculation. The back-projected point

Ps = [sinθcosϕ, sinθsinϕ, cosθ]T is the coordinates of the unit sphere since, with only one

2D image, the depth scale cannot be solved.

In particular, the polynomial coefficient ηi can be initially guessed by fitting the “F-

Theta” distortion curve with a polynomial in (4.3) before calibration. During camera

calibration, the initial guess of the polynomial coefficients will not be far from the true

value.

4.3 Photometric Model

In [21], we discussed that one of the main shortcomings of our omnidirectional stereo is

that the stereo matching method is challenging due to the unbalanced illumination caused

by vignetting of the optical system. Additionally, configured with an upper camera and

a downer camera, the omnidirectional stereo earns a vertical epipolar line. Therefore, the

illumination balance in the vertical direction in the ROI images is necessary.

The intensity of each pixel is influenced not only by the object but also by the imaging

projection system. The imaging projection system of the camera can be divided into two
18

part, the optical lens module, and the electronic sensor module. The image ray passes

through the optical system and gets some attenuation, then arrives the sensor system.

The sensor will trans the signal from optical irradiance to the electronic signal via the

exposure time. The process is illuminated in Fig. 4.4. The influential most of the two

system is called:

1. Vignetting: the optical attenuation by the optical system;

2. Radiometric response: the transform of the optical-electronic system;

Figure 4.4: The demonstration of the imaging intensity, influenced by lens system and
the sensor.

The property of the optical system can be formulated via the vignetting V (x):

Ex = V (x)Lx, (4.9)

where Lx is the radiance of the incident scene ray x, and the Ex is the irradiance of the

emitted light.

The property of the optical-electronic sensor can be formulated via the radiometric

response function f(·):

Ix = f(kEx), (4.10)

where the Ix is the intensity of the pixel and k is the exposure time.

Considering the property of the optical system and the optical-electronic sensor, the

overall formation of each intensity is:

Ix = f(kV (x)Lx) (4.11)

19

Figure 4.5: The demonstration of the vignetting. The top-left part is the raw image and
the bottom-right part is removed vignetting.

A vignetting model which is radially symmetrical and formulated as a k-order poly-

nomial:

V (r) = 1 +
k∑

i=1

βir
2i (4.12)

where the r is the distance between the pixel and the center of the camera, βi is the i order

coefficient of the polynomial and V (r) is the spatially varying optical response which is

able to describe the unbalanced illumination, the vignetting.

For an image with vignetting, the intensity of each pixel is

I(r) = I0V (r) = I0 + I0

k∑
i=1

βir
2i (4.13)

where the I0 is the intensity of the camera principle point. For a typical camera lens, six

order polynomial with three none-zero coefficients is able to fit the vignetting well, thus

k = 3.

The vignetting compensation is able to improve the quality of the visual mapping

system, as demonstration in [2].

20

4.4 ROI extraction

We have introduced the ROI extraction module for cropping regions of an original fisheye

image and converting it into a distortion-free image that is applicable for the standard

stereo matching algorithms.

(a) Illustration of ROI (b) Crop two ROI images

(c) ROI regions on a fisheye image (d) Pinhole images from ROI

Figure 4.6: Illustrations of the ROI extraction process.

A two-step re-project is used: 1) back project each pixel of the desire virtual pinhole

camera, whose intrinsic parameters are manually set, to a 3D space by π−1
v (·); 2) to

project these 3D points to the fisheye camera plane by πc(·) (shown in Fig. 7.1(a)). The

transformation between a pixel the in fisheye camera and a pixel in the virtual pinhole

camera is:

uc = πc(R
c
vπ

−1
v (uv)), (4.14)

where πc(·) is the projection function of the fisheye camera introduced in [21], with uc

being the pixel coordinates of the fisheye image. π−1
v (·) is the back projection function

21

of the virtual camera. uv is the pixel coordinates of the extracted image, and Rc
v is the

related orientation of the virtual camera in original camera frame.

The process can be shown in Fig. 4.6(a). The sphere figure out the spherical camera

C such as fisheye camera and the rectangle figure out the region of virtual camera v. Two

ROIs that cover the 180-degree horizontal view are set in a fisheye image, as illustrate as

v1 and v2 in Fig. 4.6(b), and the regions are marked out in Fig. 4.6(c). The two resulting

distortion-free pinhole images from the ROI are shown in Fig. 4.6(d)

Figure 4.7: The illustration of the virtual gimbal

With the help of ROI extraction, we can implement a virtual gimbal with a virtual

camera reproject. The virtual camera vsrc can be moved to vdst, corresponding the fisheye

camera c, shown in Fig. 4.7.

uc = πc(R
c
vsrcπ

−1
vsrc(u

vsrc)),

uc = πc(R
c
vdst

π−1
vdst

(uvdst)),
(4.15)

where πc(·) is the projection function of the fisheye camera introduced, with uc being the

pixel coordinates of the fisheye image. π−1
vsrc(·) and π−1

vdst
(·) is the back projection function

of the virtual camera, original one and the destination one. uvsrc and uvdst is the pixel

coordinates of the extracted image, and Rc
vsrc and Rc

vdst
is the related orientation of the

virtual camera in original camera frame.

Furthermore, a digital electronic image stabilization can be executed with a virtual

camera reproject. As shown in Fig. 4.8, the real fisheye camera captured two images and

the corresponding frame is C and C ′. There is a rotation RC′
C between C and C ′. In the

frame C, the pixel map between the virtual camera v and fisheye camera C is:

uc = πc(R
c
vπ

−1
v (uv)). (4.16)

To keep the virtual camera v being stable, in next image, the rotation RC′
C should be

22

Figure 4.8: The illustration of the virtual electronic image stabilization

considered:

uc′ = πc(R
c′

c R
c
vπ

−1
v (uv)), (4.17)

where πc(·) is the projection function of the fisheye camera introduced, with uc being

the pixel coordinates of the fisheye image. π−1
v (·) is the back projection function of the

virtual camera. uv is the pixel coordinates of the extracted image, and Rc
v is the related

orientation of the virtual camera in original camera frame.

23

24

CHAPTER 5

COMPUTER VISION ON SPHERE IMAGES

The details of the multiple view geometry in computer vision have been described in [26].

However, the main discussion focus on the perspective cameras. The definitions in per-

spective cameras are widely used, but not satisfy the spherical cameras. In this chapter,

we modify the definitions to satisfy spherical cameras, including some essential definitions

of geometry computer vision for spherical cameras include image coordinate evaluate (par-

allax and projection error) and the geometry computer vision (depth, epipolar constraint,

homography, triangulation, and Perspective-n-Point).

5.1 Review of Sphere Images

Figure 5.1: Projection from 3D point Pc to 2D point Pi . Back projection from 2D point
Pi to 3D point on the unit sphere Ps. Oc and Ocl are virtual points.

As shown in Fig. 5.1, the projection can be divide as three process:

1. from the point Pw in world frame to point in the camera frame Pc;

2. from the point in camera frame Pc to incident vector P̄cOc;

3. from the incident vector P̄cOc to pixel coordinate uc = [u v]T ;

25

For perspective cameras, all of the processes can get analytical solutions. For omnidirec-

tional cameras and fisheye cameras, the analytical solution of process 3 is complex, even

not exist. Thus it is improper to do other calculated in pixel coordinate. For perspective

cameras, the projection satisfy uc = [u v 1]T = K
[
ux/uz uy/uz 1

]T , K is the intrinsic

parameters matrix. Therefore, for perspective cameras, we can focus on the pixel co-

ordinate. For ultra-wide filed-of-view camera and omnidirectional cameras, we need to

consider the situation that uiz ∈ (−1, 1], unlike perspective camera model satisfy uiz = 1.

Thus, the geometry computer vision need to focus on the inverse vector of the incident

vector P̄cOc, that is OcP̄c = u =
[
ux uy uz

]T , a unit vector.

For one point i, the coordinate in world frame is Xw
i =

[
Xw

ix Xw
iy Xw

iz

]T . The pro-

jection of cameras can be describe as:

λui = λ

uix

uiy

uiz

 = π(
[
R T

]
Xw

ix

Xw
iy

Xw
iz

1

), (5.1)

With this formulation, the perspective projection is support not only the perspective

cameras, also the ultra-wide filed-of-view cameras, especially some cameras with over

270-degree filed-of-view.

5.2 Image Coordinate Evaluate

5.2.1 Parallax

Figure 5.2: In the unit sphere S, the parallax of two image vector u and u′ is the angle
θd.

For perspective cameras, the parallax of perspective cameras always define as the

difference of two image points:

d = ũ− ũ′, (5.2)

26

where ũ and ũ′ are the points in pixel coordinate. The parallax of spherical image is

define as the parallax angle:

θd = arccos(u · u′), (5.3)

where u and u′ is the image unit vectors in two frames. with the unit rad or degree (◦),

as shown in Fig. 5.2.

5.2.2 Projection Error

Figure 5.3: The illustration of different kinds of Projection Errors on the sphere.

For the perspective cameras, the projection error can be described as pixel coordinate

error eu or the unit plane error em. For the spherical cameras, include omnidirectional

cameras and the ultra-wide field-of-view cameras, the projection error is the difference

between the two vectors. There are some methods to describe the projection error: angular

error eθ, bearing vector difference error ef , tangential error et.

The projection error is define as:

Pixel Coordinate Error The pixel coordinate error is define as the difference of two image

points:

eu = ũ− ũ′ (5.4)

where the ũ and ũ′ are points in pixel coordinate.

27

Unit Plane Error To project the two points into a unit plane with z = 1, the unit plane

error is define as:

em =

[
ũx/ũz

ũy/ũz

]
−
[
ũ′
x/ũ

′
z

ũ′
y/ũ

′
z

]
(5.5)

where the ũ and ũ′ are points in pixel coordinate.

Angular Error Same as Sect. 5.2.1, the projection error can be described with angular

error. The parallax is define as the parallax angle:

eθ = arccos(u · u′), (5.6)

with the unit rad or degree (◦).

Vector Difference Error The vector difference error is define as the difference of two unit

bearing vectors of points:

ef = u− u′ (5.7)

where u and u′ are the image unit bearing vectors of two points.

Tangential Error To project the difference of two unit bearing vectors of points onto a

tangential plane, the tangential error is define as:

et = [b1 b2]δu (5.8)

where δu = u−u′ is the difference of two unit bearing vectors; b1 and b2 are two orthogonal

bases spanning the tangent plane [45].

5.3 Geometry Computer Vision

5.3.1 Depth

The depth of sphere camera is different with the perspective cameras. As shown in Fig. 5.4,

for the sphere camera C, the depth d is define as the distance between the point Xi and

the center of the camera:

d = ‖OXi‖ , (5.9)

where O is the center point of the camera.
28

Figure 5.4: Depth of sphere camera.

5.3.2 Epipolar Constraint

Figure 5.5: The illustration of epipolar constraint.

Epipolar Constraint We have seen that two perspective cameras observing the same

points must satisfy the epipolar constraint:

u′TEu = 0, (5.10)

where the essential matrix E = btc× R. For one point i captured in two frames, corre-

sponding as u′
i =

[
u′
ix u′

iy u′
iz

]T and ui =
[
uix uiy uiz

]T :

[
u′
ix u′

iy u′
iz

]
E

uix

uiy

uiz

 = 0, (5.11)

Solve the essential matrix with epipolar constraint Rewrite matrix E:

[
u′
ix u′

iy u′
iz

] e1 e2 e3
e4 e4 e5
e7 e8 e9

uix

uiy

uiz

 = 0, (5.12)

[
uixu

′
ix uiyu

′
ix uizu

′
ix uixu

′
iy uiyu

′
iy uizu

′
iy uixu

′
iz uiyu

′
iz uizu

′
iz

]
e = 0, (5.13)

where e =
[
e1 e2 e3 e4 e5 e6 e7 e8 e9

]T .
29

Consider multiple points measurements,[
uixu

′
ix uiyu

′
ix uizu

′
ix uixu

′
iy uiyu

′
iy uizu

′
iy uixu

′
iz uiyu

′
iz uizu

′
iz

...

]
e = 0, (5.14)

Ae = 0 (5.15)

Thus, combining these equations we get an overdetermined system of linear equations

that we can solve the essential matrix E with SVD.

5.3.3 Homography

Figure 5.6: The illustration of homography.

One point i is captured in two frames, corresponding as u′
i =

[
u′
ix u′

iy u′
iz

]T and

ui =
[
uix uiy uiz

]T .

Assume that

nTPi + d = 0, (5.16)

as the planar model in the camera frame c′, where the Pi is the point on the planar, n is

the normal vector and d is the distance of the camera frame and the planar.

The projection of one frame to another is:

ui = RPi + t

= RPi + t

(
−nTPi

d

)

=

(
R− tnT

d

)
Pi.

(5.17)

With the scale λ, the point is Pi = u′
i/λ. Equation 5.17 can be write as:

λui = Hu′
i, (5.18)

30

Rewrite matrix H:

λ

uix

uiy

uiz

 =

h1 h2 h3

h4 h4 h5

h7 h8 h9

u′
ix

u′
iy

u′
iz

 , (5.19)

λuix = h1u

′
ix + h2u

′
iy + h3u

′
iz

λuiy = h4u
′
ix + h4u

′
iy + h5u

′
iz

λuiz = h7u
′
ix + h8u

′
iy + h9u

′
iz

(5.20)

From equation 5.20, the unknown scale λ is:

λ =
h1u

′
ix + h2u

′
iy + h3u

′
iz

uix

(5.21)

λ =
h4u

′
ix + h4u

′
iy + h5u

′
iz

uiy

(5.22)

λ =
h7u

′
ix + h8u

′
iy + h9u

′
iz

uiz

(5.23)

The scale λ is unknown and can be written as equation 5.21, 5.22, and 5.23. In order to

avoid the numerical problems, we find one of λ equation from 5.21, 5.22, and 5.23 and

solve with equation 5.20.

Consider multiple points measurements, if ‖uix‖ > ‖uiy‖ and ‖uix‖ > ‖uiz‖, solve with

equation 5.21 and 5.20:
−u′

ixuiy

uix
−u′

iyuiy

uix
−u′

izuiy

uix
u′
ix u′

iy u′
iz 0 0 0

−u′
ixuiz

uix
−u′

iyuiz

uix
−u′

izuiz

uix
0 0 0 u′

ix u′
iy u′

iz
...

 h = 0, (5.24)

if ‖uiy‖ > ‖uix‖ and ‖uiy‖ > ‖uiz‖, solve with equation 5.22 and 5.20:

u′
ix u′

iy u′
iz −

u′
ixuix

uiy
−u′

iyuix

uiy
−u′

izuix

uiy
0 0 0

0 0 0 −u′
ixuiz

uiy
−u′

iyuiz

uiy
−u′

izuiz

uiy
u′
ix u′

iy u′
iz

...

 h = 0, (5.25)

if ‖uiz‖ > ‖uix‖ and ‖uiz‖ > ‖uiy‖, solve with equation 5.23 and 5.20:

u′
ix u′

iy u′
iz 0 0 0 −u′

ixuix

uiz
−u′

iyuix

uiz
−u′

izuix

uiz

0 0 0 u′
ix u′

iy u′
iz −

u′
ixuiy

uiz
−u′

iyuiy

uiz
−u′

izuiy

uiz...

 h = 0, (5.26)

31

where h =
[
h1 h2 h3 h4 h5 h6 h7 h8 h9

]T . Thus, combining these equations we

get an overdetermined system of linear equations that we can solve the homography matrix

with SVD.

Ah = 0 (5.27)

5.3.4 Triangulation

Figure 5.7: The illustration of triangulation.

The observations of a points Xi in multiple frames is:
PXi = u

P ′Xi = u′
(5.28)

Linear triangulation, Minimizing the algebraic error

For one observed points perspective projection:
ui = PXi

ui × PXi = 0uix

uiy

uiz

×
p1T

p2T

p3T

Xi = 0

uiyp
3T − uizp

2T

uizp
1T − uixp

3T

uixp
2T − uiyp

1T

Xi = 0

(5.29)

This algorithm uses the two equations for perspective projection to solve for the 3D point

that are optimal in a least squares sense. Each perspective camera model gives rise to

there equations on the three entries of Xi.
uiyp

3T − uizp
2T

uizp
1T − uixp

3T

uixp
2T − uiyp

1T

y′ip
′3T − z′ip

′2T

z′ip
′1T − x′

ip
′3T

x′
ip

′2T − y′ip
′1T

Xi = 0 (5.30)

32

uiyp31 − uizp21 uiyp32 − uizp22 uiyp33 − uizp23 uiyp34 − uizp24
uizp11 − uixp31 uizp12 − uixp32 uizp13 − uixp33 uizp14 − uixp34
uixp21 − uiyp11 uixp22 − uiyp12 uixp23 − uiyp13 uixp24 − uiyp14
y′ip

′
31 − z′ip

′
21 y′ip

′
32 − z′ip

′
22 y′ip

′
33 − z′ip

′
23 y′ip

′
34 − z′ip

′
24

z′ip
′
11 − x′

ip
′
31 z′ip

′
12 − x′

ip
′
32 z′ip

′
13 − x′

ip
′
33 z′ip

′
14 − x′

ip
′
34

x′
ip

′
21 − y′ip

′
11 x′

ip
′
22 − y′ip

′
12 x′

ip
′
23 − y′ip

′
13 x′

ip
′
24 − y′ip

′
14

Xi = 0 (5.31)

AXi = 0 (5.32)

Combining these equations we get an overdetermined system of linear equations that we

can solve with SVD.

For multiple observations, the minimized algebraic error is not geometrically mean-

ingful, but the method extends naturally to the case when Xi is observed in more than

frames images.

uiyp
3T − uizp

2T

uizp
1T − uixp

3T

uixp
2T − uiyp

1T

y′ip
′3T − z′ip

′2T

z′ip
′1T − x′

ip
′3T

x′
ip

′2T − y′ip
′1T

...

Xi = 0

AXi = 0

(5.33)

5.3.5 Perspective-n-Point

(a) the world points Xw is in the same planar (b) the world points Xw is not in the same
planar

Figure 5.8: The illustration of Perspective-n-Point.

As shown in Fig. 5.8, for the world point Xw
i =

[
Xw

ix Xw
iy Xw

iz

]T , the projection of

the spherical camera is:

λui = λ

uix

uiy

uiz

 =
[
R T

]
Xw

ix

Xw
iy

Xw
iz

1

 , (5.34)

33

where λ is unknown scale.

If all of the world points Xw is in the same planar, solve with homography method

in Sect. 5.3.3. If all of the world points Xw is not in the same planar, solve with DLT

method.

Direct linear transformation Rewrite matrix
[
R T

]
:

λ

uix

uiy

uiz

 =

p1 p2 p3 p4
p5 p6 p7 p8
p9 p10 p11 p12

Xw

ix

Xw
iy

Xw
iz

1

 , (5.35)

λuix = p1X

w
ix + p2X

w
iy + p3X

w
iz + p4,

λuiy = p5X
w
ix + p6X

w
iy + p7X

w
iz + p8,

λuiz = p9X
w
ix + p10X

w
iy + p11X

w
iz + p12.

(5.36)

From equation 5.36, the unknown scale λ is:

λ =
p1X

w
ix + p2X

w
iy + p3X

w
iz + p4

uix

(5.37)

λ =
p5X

w
ix + p6X

w
iy + p7X

w
iz + p8

uiy
(5.38)

λ =
p9X

w
ix + p10X

w
iy + p11X

w
iz + p12

uiz

(5.39)

The scale λ is unknown and can be written as equation 5.37, 5.38, and 5.39. In order to

avoid the numerical problems, we find one of λ equation from 5.37, 5.38, and 5.39 and

solve with equation 5.36.

If ‖uix‖ > ‖uiy‖ and ‖uix‖ > ‖uiz‖, solve with equation 5.37 and 5.36:

−Xw

ixuiy

uix
−Xw

iyuiy

uix
−Xw

izuiy

uix
−uiy

uix
Xw

ix Xw
iy Xw

iz 1 0 0 0 0

−Xw
ixuiz

uix
−Xw

iyuiz

uix
−Xw

izuiz

uix
−uiz

uix
0 0 0 0 Xw

ix Xw
iy Xw

iz 1
...

P = 0,

(5.40)

if ‖uiy‖ > ‖uix‖ and ‖uiy‖ > ‖uiz‖, solve with equation 5.38 and 5.36:

Xw

ix Xw
iy Xw

iz 1 −Xw
ixuix

uiy
−Xw

iyuix

uiy
−Xw

izuix

uiy
−uix

uiy
0 0 0 0

0 0 0 0 −Xw
ixuiz

uiy
−Xw

iyuiz

uiy
−Xw

izuiz

uiy
−uiz

uiy
Xw

ix Xw
iy Xw

iz 1
...

P = 0,

(5.41)

34

if ‖uiz‖ > ‖uix‖ and ‖uiz‖ > ‖uiy‖, solve with equation 5.39 and 5.36:
Xw

ix Xw
iy Xw

iz 1 0 0 0 0 −Xw
ixuix

uiz
−Xw

iyuix

uiz
−Xw

izuix

uiz
−uix

uiz

0 0 0 0 Xw
ix Xw

iy Xw
iz 1 −Xw

ixuiy

uiz
−Xw

iyuiy

uiz
−Xw

izuiy

uiz
−uiy

uiz...

P = 0,

(5.42)

where P =
[
p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12

]T . Thus, combining these

equations we get an overdetermined system of linear equations that we can solve with

SVD.

AP = 0 (5.43)

Nonlinear Perspective-n-Point For the point i in the spherical images, the reprojection

error is defined as tangential error in Sect. 5.2.2:

ei = [bi1 bi2](ui − u′
i),

s.t.u′
i =

RXw
i +T

||RXw
i +T||

(5.44)

where ui is the image unit bearing vector of point i and u′
i is the normalized bearing

vector in camera frame. bi1 and bi2 are the orthogonal bases spanning the tangent plane

by vector ui [45].

The nonlinear Perspective-n-Point is to minimize the sum of the Mahalanobis norm

of the re-projection error of all the observed points via the rotation R and the translation

T:

min
R,T

∑
i

‖[bi1 bi2](ui − u′
i)‖

2
,

s.t.u′
i =

RXw
i +T

||RXw
i +T||

(5.45)

where i is the index of the observed points.

5.3.6 Structure From Motion

As shown in Fig. 5.9, for the world point Xw
j =

[
Xw

jx Xw
jy Xw

jz

]T in the frame i, the

projection of the spherical camera is equation (5.34).

The structure from motion for spherical image is to estimating the three-dimensional

structures from two-dimensional image points that coupled with local motions.
35

Figure 5.9: The illustration of Structure From Motion.

The cost function of the spherical structure from motion is similar to the cost function

of PnP equation (5.45). The spherical structure from motion is to minimize the sum of the

Mahalanobis norm of the re-projection error of all the observed points via the rotations

R , the translations T, and the position of the world points Xw:

min
Ri,Ti,Xw

j

∑
i

∑
j

∥∥[bj1 bj2](uj − u′
j)
∥∥2

,

s.t.u′
j =

RiXw
j +Ti

||RiXw
j +Ti||

(5.46)

where j is the index of the observed points in the frame i, bi1 and bi2 are the orthogonal

bases spanning the tangent plane by vector ui [45].

36

CHAPTER 6

DUAL-FISHEYE VISUAL-INERTIAL STATE
ESTIMATION

For the autonomous flight, The state estimation is important to provide accurate states,

including position, orientation, and velocity.

In this section, we improve the state-of-the-art tightly-coupled visual inertial naviga-

tion system [61] to satisfy dual-fisheye cameras, which construct with two ultra-wide FoV

fisheye cameras. With ultra-wide FOV, cameras provide more spherical coverage of the

surrounding environment and the probability of textureless situation is lower. Thus, the

estimator is more robust than the perspective cameras.

6.1 Related Work

Visual-inertial estimation is an academic hotspot recently. There exist sparse visual-

inertial estimation with monocular camera [28, 42, 65, 61, 41, 55, 5], stereo cameras [39],

or RGB-D cameras [31]. In [11], the authors test some publicly-available VIO pipelines

(VINS-Mono[61], OKVIS[41], MSCKF[55], ROVIO[5], SVO+MSF, and SVO+GTSAM

) on different hardware configurations and evaluates the performance. Most of them are

used for pinhole cameras.

In [62], the authors proposed an ego-motion estimator based on visual and inertial

sensors named Omnidirectional Visual-Inertial Odometry (OVIO). The OVIO combines

omnidirectional visual features with inertial measurements based on the Multi-State Con-

straint Kalman Filter (MSCKF). The authors extend the measurement model onto a plane

tangent to the unit sphere rather than on the image plane is defined. The key hypothesis

of the spherical visual inertial odometry is that a wider field of view allows the incorpo-

ration of more visual features from the surrounding environment, thereby improving the

accuracy and robustness of the odometry estimation.

In [9], the authors propose a real-time, direct monocular SLAM method for omni-

directional or wide field-of-view fisheye cameras. The formulations of the direct image

alignment tracking and the pixel-wise distance filtering mapping are built based on the
37

Figure 6.1: An example of the sliding window with four IMU states xj and four features
Pl.

unified omnidirectional camera model, which can model central imaging devices with a

large field of view. Additionally, to incremental stereo directly on distorted images with

such a fast accurate mapping approach. The authors find that the system is able to ob-

serve and reconstruct a larger portion of the surrounding environments. And the system

is more robust to handle the degenerate movement, such as rotation-only case.

In this paper, to achieve accurate online estimation, we use a sparse and feature-based

tightly-coupled optimization-based visual-inertial framework with robust initialization.

The method is to extracts and tracks features, pre-integrate IMU in the front-end, and

minimizes visual and inertial geometry error in the back-end.

6.2 Sliding Window Formulation

The IMU and camera measurements are taken in a fixed time interval for state estimation.

The algorithm achieves high-accurate state estimation by taking advantage of multi-view

constraints. As shown in Fig. 6.1, several number of IMU and camera measurements

are incorporated in the fixed window. Yellow lines represent the pre-integrated IMU

measurements and red lines illustrate visual measurements. Note that there is a constant

but unknown camera-IMU extrinsic calibration xb
c. All aforementioned quantities as well

as IMU bias are jointly estimated in our framework.

The full state vector X in the sliding window with n cameras, m frames and l features

38

is defined as:

X =
[
x0, x1, · · · xm, x

b
c0
, xb

c1
, · · · xb

cn , λ0, λ1, · · · λl

]
xi =

[
pw
bi
, vw

bi
, qw

bi
, bb

a, b
b
g

]
, k ∈ [0,m]

xb
cj
=

[
pb
cj
, qb

cj

]
, j ∈ [0, n]

(6.1)

where xi is the ith frame state, which contains position, velocity, and rotation in the world

frame and acceleration bias and gyroscope bias in the IMU frame, treated as body frame.

For concise representation, we use quaternion to denote rotation matrix here. xb
cj

contains

translation and rotation, which is the transformation from the jth camera frame to the

IMU frame, extrinsic parameter. We parameterize lth feature in its inverse depth λl form

the first unit sphere observation.

6.3 Measurement Preprocessing

We consider two kinds of measurements in the state estimation. One is the sparse features

of images, and the other is the IMU measurements. They are preprocessed then incorpo-

rated into the estimation. The features are detected and tracked from the image sequence

in the feature processing front-end. And the IMU measurements are pre-integrated.

6.3.1 Feature Processing Front-End

For the dual-fisheye omnidirectional stereo system, there are two ultra-wide-FOV images

cover the whole spherical sensing scope with both monocular, binocular and stereo, as

shown in Fig. 1.2.

Figure 6.2: Tracked features of overlapping regions.

39

Figure 6.3: Tracked features in the monocular regions.

For each pair of new images, the ROI extraction preprocess will translate the two

spherical images to 10 images. Two of them cover up-ward and down-ward with monocular

vision, as shown in Fig. 6.3, and 8 of them cover front-ward, left-ward, right-ward, and

back-ward with stereo vision, as shown in Fig. 6.2. The existing features are tracked

by the KLT sparse optical flow algorithm [49] and new corner features are detected to

maintain a minimum number of features (150−250) in the whole sphere totally. Features

are projected to two unit sphere using the camera model, one for the upward camera and

another one for the downward camera. Outlier rejection performs by the RANSAC step.

During the feature tracing and detecting, the average parallax angle is calculated in

order to select keyframes beyond a certain threshold. Also, new pair frames are treated

as a keyframe if the number of tracked features goes below a certain threshold.

6.3.2 IMU Pre-Integration

The IMU measurements are angular velocity ω̂b
t and linear acceleration âb

t in IMU frame,

affected by bias b and noise η,

ω̂b
t = ωb

t + bg + ηg

âb
t = R(qw

t)
T(aw

t + gw) + ba + ηa.
(6.2)

40

For two time instants k and k+ 1 that correspond to image frame bk and bk+1, the linear

acceleration and angular velocity in the local frame bk can be pre-integrated as:

αbk
bk+1

=

∫∫
t∈[k,k+1]

γbk
bt
âtdt

2

βbk
bk+1

=

∫
t∈[k,k+1]

γbk
bt
âtdt

γbk
bk+1

=

∫
t∈[k,k+1]

γbk
bt
⊗

[
0

1
2
ω̂t

]
dt,

(6.3)

where ⊗ denotes the quaternion multiplication operation. The pre-integration part is

obtained solely with IMU measurements within [k, k + 1] since its independence for pose

and velocity.

6.4 Initialization

We do need a good initial guess to bootstrap the whole non-linear tightly-coupled visual-

inertial optimization system. And the IMU pre-integration result cannot be directly used

as the initial guess without the known of the initial attitude and velocity. Furthermore,

the estimation is dramatically affected by the unknown biases of the IMU measurements.

A loosely-coupled sensor fusion method is adopted to get the initialization. For stereo

overlapping of our system, a stereo visual odometry is able to initialize itself. And we

find that stereo vision SLAM has a good property of initialization. A stereo visual-only

system can bootstrap itself by a derived initial guess. Through loosely-coupled align-

ment between the stereo visual odometry and IMU metric pre-integration information,

the gravity, velocity, and gyroscope bias can be roughly recovered. They satisfy with

bootstrapping a nonlinear system.

We first construct the stereo visual odometry of the sliding window, including pose

and feature position. Then the information of the visual odometry is aligned with the

IMU information, to calculate the velocity, gravity vector and the bias of the gyroscope.

The visual odometry is nonlinear, but it can bootstrap itself stably and the scale is

approximate since the stereo baseline for sure. The second step is in linear form.

The extrinsic parameter xb
ci

between camera i and IMU is needed in the initial step.

Note that only an initial guess about the extrinsic parameter is needed here, and accurate

estimation will be carried out in non-linear optimization.

41

6.4.1 Visual Only Odometry in Sliding Window

In this step, we try to construct the vision only structure (up-to-scale camera pose for the

monocular region, scaled camera pose for the stereo region, and feature position) within

the window.

For the monocular region, we firstly choose two keyframes which contain sufficient

feature parallax in the sliding window. Next, we use the Five-point method [57] to re-

cover the relative rotation and up-to-scale translation between these two frames, then

fix the scale of translation and triangulate the features observed in these two frames.

For the stereo region, since existing the feature match between different cameras, and

an approximate translation between the two cameras is known, feature parallax exists

in the two images and every frame can be chosen as a keyframe. we use stereo triangu-

late to estimate the position of observed features. Based on these triangulated features,

Perspective-n-Point method is performed to estimate all frame poses in the sliding window

in Sect. 5.3.5.

A global full Bundle Adjustment [72] is then applied to minimize the total re-projection

error of all feature observations in all frames. After that, we get all keyframe poses

(p̄c0
ci

,qc0
ci

) and feature positions. Here, (̄·) denotes up to scale variables. We write all poses

in the local frame (·)c0 , which is the first camera frame in the window. Since the extrinsic

parameter (pb
c,q

b
c) between camera frame and IMU (body) frame is known, all variables

are transformed into the IMU frame,

qb0
bi
= qb

c ⊗ qc0
ci
, (6.4)

For the feature points in the stereo overlapping region, the keyframe poses is

p̄b0
bi
= qb

cp̄
c0
ci
+ pb

c. (6.5)

Different with the stereo case, if all feature points are observed in monocular region, the

keyframe poses is up-to-scale:

sp̄b0
bi
= sqb

cp̄
c0
ci
+ pb

c, (6.6)

where s is the unknown scale, which will be solved in the next section.

6.4.2 Visual-Inertial Alignment

IMU Bias Initialization Assume the IMU gyroscope bias bg is constant in current win-

dow. Considering two consecutive frames bk and bk+1 in the window, we have the relative
42

Figure 6.4: Initialization features of overlapping regions.

rotation qb0
bk

and qb0
bk+1

from the visual structure, as well as rotation propagation result

γ̂bk
bk+1

from the IMU pre-integration. We estimate the gyroscope bias by minimizing the

error between these two terms:

min
bg

∑
k∈B

∥∥∥qb0
bk+1

−1⊗ qb0
bk
⊗ γbk

bk+1

∥∥∥2

γbk
bk+1
≈ γ̂bk

bk+1
⊗

[
1

1
2

∂γ
bk
bk+1

∂bg
bg

]
,

(6.7)

where B indexes the IMU measurement in the window. By solving this least square

problem, we can get the estimation of bg. Then we update α̂bk
bk+1

, β̂
bk
bk+1

with respect to

bg.

As for the accelerometer bias, it is hard to solve it at the initialization procedure, since

sufficient rotation movements are needed to distinguish the accelerometer bias and the

gravity, when we are solving gb0 at the same time. However, giving a coarse initial guess

is adequate because we will continuously refine the bias after the initialization. Hence,

we treat accelerometer bias ba as zero in the initialization step.

Velocity and Gravity Vector Initialization For the window contains features of the stereo

region, we solve the velocity and gravity vector. We define the variables that we would

like to estimate as

XI =
[
vb0
b0
, vb0

b1
, · · · vb0

bn
, gb0

]
, (6.8)

43

where s is the scale parameter that aligns the visual structure to the actual metric scale

implicitly provided by IMU measurements. Based on the Newton kinematic, we can get

the equation as the following form shown:

ẑbkbk+1
=

[
α̂bk

bk+1

β̂
bk
bk+1

]
= Hbk

bk+1
XI + nbk

bk+1
≈

[
−qbk

b0
∆tk 0 1

2
qbk
b0
∆t2k

−qbk
b0

qbk
b0

qbk
b0
∆tk

] vb0
bk

vb0
bk+1

gb0

 . (6.9)

Velocity, Gravity Vector and Metric Scale Initialization For the window contains fea-

tures of the monocular region, we solve the velocity, gravity vector, and metric scale since

the pose is up-to-scale. We define the variables that we would like to estimate as

XI =
[
vb0
b0
, vb0

b1
, · · · vb0

bn
, gb0 , s

]
, (6.10)

where s is the scale parameter that aligns the visual structure to the actual metric scale

implicitly provided by IMU measurements. Based on the Newton kinematic, we can get

the equation as the following form shown:

ẑbkbk+1
= Hbk

bk+1
XI + nbk

bk+1
≈

[
−qbk

b0
∆tk 0 1

2
qbk
b0
∆t2k qbk

b0
(p̄b0

bk+1
− p̄b0

bk
)

−qbk
b0

qbk
b0

qbk
b0
∆tk 0

]
vb0
bk

vb0
bk+1

gb0

s

 .

(6.11)

In the above formula, qb0
bk
, p̄b0

bk
, p̄b0

bk+1
are obtained from the visual structure with respect

to body frame (·)b0 . ∆tk is the time interval between two consecutive keyframes. By

solving the following least square problem:

min
XI

∑
k∈B

∥∥∥ẑbkbk+1
−Hbk

bk+1
XI

∥∥∥2

, (6.12)

we can get the velocities in every local frame, and the gravity vector in the visual base

frame (·)b0 , as well as the scale parameter. The translational components p̄bi from the

visual structure will be scaled to the metric units. We rotate all variables from frame (·)b0

to the world frame (·)w where the gravity vector is vertical. At this point, the initialization

procedure is completed and these metric values will be fed for a tightly-coupled nonlinear

visual-inertial estimator.

6.5 Tightly-Coupled Visual-Inertial Localization

After state initialization, we proceed with a sliding window nonlinear estimator for high-

accuracy state estimation. This is an extension of our earlier work [69, 73] by including
44

IMU bias calibration in the nonlinear optimization framework.

6.5.1 Formulation

We minimize the sum of the Mahalanobis norm of all measurement residuals to obtain a

maximum of a posteriori estimation:

min
X

{
‖rp −HpX‖2 +

∑
k∈B

∥∥∥rB(ẑbkbk+1
, X)

∥∥∥2

P
bk
bk+1

+
∑

(l,j)∈C

∥∥rC(ẑcjl , X)∥∥2

P
cj
l

 , (6.13)

where rB(ẑ
bk
bk+1, X) and rC(ẑ

cj
l , X) are measurement residuals for the IMU and camera

respectively. B is the set of all IMU measurements, and C is the set of feature observations

in the corresponding frame. Corresponding measurement models are defined in Sect. 6.5.2

and Sect. 6.5.3. {rp, Hp} is the prior information, which will be discussed in Sect. 6.5.4.

We use error-state representation to linearize the nonlinear system (6.13) and solve it via

Gauss-Newton algorithm.

6.5.2 IMU Measurement Model

Following the kinematics theory, the residual of a pre-integrated IMU measurement can

be defined as

rB(ẑ
bk
bk+1

, X) =

δαbk

bk+1

δβbk
bk+1

δγbk
bk+1

δba
bk
bk+1

δbg
bk
bk+1

 =

qbk
w (pw

bk+1
− pw

bk
+ gw∆t2/2)− vbk

bk
∆t− α̂bk

bk+1

qbk
w (qw

bk+1
v
bk+1

bk+1
+ gw∆t)− vbk

bk
− β̂

bk
bk+1

2
[
γ̂
b−1
k
bk+1
⊗ qb−1

w
bk
⊗ qbw

bk+1

]
xyz

ba
bk+1

bk+1
− ba

bk
bk

bg
bk+1

bk+1
− bg

bk
bk

, (6.14)

where
[
·
]
xyz

extracts the vector part of the quaternion q, which is the approximation

of error state representation. [α̂bk
bk+1

, β̂
bk
bk+1

, γ̂bk
bk+1

]T is the pre-integrated IMU measure-

ment using only noisy accelerometer and gyroscope measurements, which is related to

accelerometer and gyroscope bias and independent of initial velocity and attitude.

The covariance matrix Pbk
bk+1

can then be calculated by first-order discrete-time prop-

agation within the time interval [k, k + 1].

45

6.5.3 Camera Measurement Model

To utilize the benefit of large FOV camera, we define the camera measurement residual

on an unit sphere as proposed in [46], which matches the fisheye camera model. As shown

in Fig 6.5, the camera residual for the observation of the lth feature which first captured

by the km
th camera, in the jth frame captured by the kn

th camera is defined as

rC(ẑ
cj
l , X) =

[
b1 b2

]T · (P̂cknj
l − Pcknj

l

‖Pcknj
l ‖

), (6.15)

where

P̂cknj
l =

x̂
cknj
l

ŷ
cknj
l

ẑ
cknj
l

 , (6.16)

is the observation of the lth feature in the jth image, kth
n camera.

The general formulation of the camera measurements of the lth feature which first

captured by the km
th camera, in the jth frame captured by the kn

th camera is

Pcknj
l = −Rb−1

ckn t
b
ckn +Rb−1

ckn

−Rw−1

bj
twbj +Rw−1

bj
(twbi +Rw

bi
(tbckm +Rb

ckm

1

λl

·

x
ckmi
l

y
ckmi
l

z
ckmi
l

))
 ,

(6.17)

Especially, as for the feature of monocular camera, the first captured camera is the cap-

tured camera m = n. Thus the camera measurements for the lth feature in the jth frame

captured by the kth camera is:

Pckj
l = −Rb−1

ck tbck +Rb−1

ck

−Rw−1

bj
twbj +Rw−1

bj
(twbi +Rw

bi
(tbck +Rb

ck
1

λl

·

x
cki
l

y
cki
l

z
cki
l

))
 ,

(6.18)

where [x
cki
l y

cki
l z

cki
l]T is the noiseless first observation of the lth feature that happens in the

ith image, kth camera. To simply the representation, we omit homogeneous term in above

equations. Tb
c is the transformation from the camera frame to the IMU (body) frame, and

its inverse transforms from the IMU frame to the camera frame. Tw
bi

transforms from the

ith IMU frame to the world frame. π−1
c (·) is the back projection function which outputs

46

t

Figure 6.5: An illustration of the camera measurement residual on the unit sphere.

the unit vector in 3D space. Since the degree of freedom of the vision residual is two, we

project the unit vector residual into the tangent plane, which guarantees the right degree

of freedom. b1,b2 are two arbitrarily selected orthogonal bases which span the tangent

plane of P̂cj
l .

6.5.4 Marginalization

In order to bound the computational complexity of graph optimization-based methods,

marginalization is incorporated. We selectively marginalize out IMU states xk and fea-

tures λl from the sliding window, meanwhile convert measurements corresponding to the

marginalized states into a prior.

In our previous work [73, 69], we use the two-way-marginalization scheme to selectively

remove recent or old states based on the scene parallax test. A new frame is added to the

sliding window if it is a keyframe, and the oldest frame states are marginalized out with

its corresponding measurement. Otherwise, if a non-keyframe comes, we marginalize out

the second newest frame. This marginalization scheme can keep spatial keyframes in the

window, meanwhile bound the uncertainty for pre-integrated IMU measurements.

However, one drawback of our previous strategy is that marginalizing out the sec-

ond newest frame generates a dense prior, which will destroy the sparsity of the system,

increasing the computational complexity. To avoid this, we slightly modify the strat-

egy on marginalizing the second newest frame. When a non-keyframe comes, instead of

marginalizing out all measurement, we throw the visual measurements and keep the IMU

measurements corresponding to the second newest frame in the window. Although we

drop some visual measurements, these measurements are not significant since they corre-

spond to small motion which do not affect the visual structure. One potential drawback is

that we extend the time interval of pre-integration which will induce large covariance into

47

Figure 6.6: An illustration of the feature measurements.

the sliding window. However, this strategy maintains the sparsity of the system, making

it efficient and work well on the a computation-limited platform.

We construct a new prior based on marginalized measurements related to the removed

state. The marginalization is carried out using the Schur complement. Intuitively, by

marginalization, important information of the removed states is kept and computation

complexity is bounded.

6.6 Parameter Selection

In the estimation, we process the sensors as Gaussian process.

6.6.1 Vision Measurement Variance

The vision measurements are provide by the sparse feature detector and the feature track-

ing in pixel coordinate. The vision measurements contains the additive noise errors that

fluctuates, as “write noise”. The vision measurement um is therefore written as:

um = u+ n(u), (6.19)

where the u = [u, v]T is the feature in 2D pixel coordinate. The n(u) is the “write noise”

due to the performance of the feature front-end system.

Assume the noise of the vision measurement is Gaussian, the noise is modelled with a

zero-mean, independent, continuous-time white Gaussian noise process n(u) of strength

48

σu:

E[n(u)] ≡ [0, 0]T ,

σu =

[
σu 0
0 σu

] (6.20)

where σu is the variance in the pixel coordinate.

However, in our estimation system, the vision measurements are transformed from the

pixel coordinate to the bearing vector and the residuals are in tangent space. Thus the

variance of vision measurements should be described as noise error angle so that satisfy

the bearing vector and residual in tangent space.

After camera intrinsic calibration, we get the relationship between the bearing vectors

and the pixels. The corresponding noise error angle per pixel can be calculated via

enumerating all of the pixels. A map will be built for each camera which describes

the relationship between the pixel domain and the error angle domain. The sample of

the maps are shown in Fig. 6.7. During the nonlinear optimization, the noise of visual

measurements will be set in the pixel domain at first, then replaced with the noise error

angle by look-up-table.

(a) a perspective camera (b) a fisheye camera

Figure 6.7: The relationship map between the pixel domain and the error angle domain.

6.6.2 IMU Variance

The variance of the IMU data is calculated, analyzed and modeled using the Allan variance

[15]. The noise of IMU always modeled as quantization noise, angle random walk, bias

instability, rate random walk, and rate ramp, described by the Allan variance.

49

Figure 6.8: The Allan variance of a IMU.

For a series of IMU measurements Ω(t) with time period τ and total N consecutive

data, a group of n consecutive data points (with n < N/2) are formed as a cluster. The

cluster average is defined as

Ω̄(T) =
1

n

i+n−1∑
j=i

Ω(t), (6.21)

where associated with each cluster is a time T , which is equal to nτ . The Allan variance

is defined as

σ2
A(T) =

1

2(N − 2n)

N−2n∑
k=1

(Ω̄k+n − Ω̄k)
2. (6.22)

The variance parameters are gotten from the Allan variance [15].

The source code of the Allan variance calculation tool is open sourced at: https:

//github.com/gaowenliang/imu_utils.

6.7 IMU Propagation for Feedback Control

For the visual-inertial system, the frequency of the IMU measurements (400Hz) is much

higher than the visual feature measurements (10 Hz). Consider the time cost of feature

tracking and nonlinear optimization, the moment of the newest optimized keyframe is

almost 100ms later than the current IMU frame. To satisfy the controller performance for

real-time control, the optimized odometry of the estimator are directly propagated with

the IMU measurements until current now, which serves as the high-frequency feedback in

the control loop.
50

CHAPTER 7

DUAL-FISHEYE OMNIDIRECTIONAL DENSE
MAPPING

As the core of the autonomous quadrotor navigation, the mapping module provides a per-

ception to reconstruct the surrounding environment. This reconstruction is the backbone

for safe and efficient navigation around obstacles.

To achieve the best coverage with the fewest number of cameras, we proposed a stereo

setup with two oppositely installed fisheye camera, provide an omnidirectional stereo view.

In this section, we will introduce the model of the omnidirectional spatial stereo. This

is followed by semi-global smoothing to for outlier removal and depth propagation on

texture-less environments. We utilize the GPUs onboard the NVIDIA TX2 and with the

help of CUDA1, the system is able to provide omnidirectional depth images in real time.

Local depth images are fused using truncated signed distance field (TSDF) to provide a

global map that is directly used for trajectory planning.

7.1 Related Work

Extensive scholarly work exists in the field of dense mapping, and a large variety of

sensors, such as RGB-D cameras, stereo cameras, and monocular cameras are used. In

an RGB-D camera setting, KinectFusion [56] simultaneously solves the localization and

mapping problem. It uses iterative closest point (ICP) to solve the camera pose, then

reconstructs a global map by TSDF fusion. Autonomous flight using an RGB-D sensor

is proposed in [58, 59]. With a known mesh map constructed by a Kinect, the authors

use direct semi-dense tracking for pose estimation. However, RGB-D sensors have its own

limitation, which severely limits their usage in outdoor environments.

Spatial stereo camera is another popular sensing configuration. A semi-global match-

ing stereo method has been presented in [29]. By combining pixelwise cost and smoothness

constraints together, the author proposes a global energy function to solve the disparity

1https://developer.nvidia.com/cuda-toolkit

51

(a) The sensor configuration (b) ROI extraction (c) The omnidirectional stereo configuration

Figure 7.1: Illustration of dual-fisheye omnidirectional stereo.

map and optimizes its approximated version by dynamic programming. The stereo match-

ing cost can be further improved using machine learning-based approaches, as proposed

in [74]. Spatial stereo can easily suffer the calibration issues as it conditions on known

camera extrinsic parameters. Moreover, the baseline requirement of stereo-based methods

fundamentally limits its capability for small-scale platforms.

7.2 Dual-Fisheye Omnidirectional Stereo

The omnidirectional stereo camera system is constructed with dual oppositely installed

ultra-wide FOV fisheye cameras, one upward-facing, and the other downward-facing, and

a fixed baseline, as shown in Fig. 8.4(a). The overlapping field of view between the two

fisheye cameras naturally forms a ring-shaped omnidirectional spatial stereo setup, as

indicated in Fig. 7.1(c). The yellow area represents the 65-degree overlap. The red area

is the blind spot of the stereo. The blue area is the field of monocular view. Using fisheye

cameras with a γ FOV, we obtain FOV around (γ − 180)-degree vertical and 360-degree

horizontal.

For each fisheye camera, four different Rc
v and π−1

v (·) are used in order to crop and

rectify the original image to four direction undistorted images, as shown in Fig. 7.1(a)

and Fig. 7.1(b). The red distorted lines demarcate the ROI of the upward-facing and

downward-facing images.

The back projection functions of these two cameras c0 and c1 are π−1
c0
(·) and π−1

c1
(·).

52

Suppose a 3D point j is observed both in the upward-facing camera and downward-facing

camera. Its coordinates in each frame are Pc0
j and Pc1

j . The projections on the image

frame are uc0
j and uc1

j , and the corresponding depths are λc0
j and λc1

j respectively. With

the camera model, we denote the normalized pixel coordinates of Pc0
j and Pc1

j as

P̄c0
j = π−1

c0
(uc0

j), P̄c1
j = π−1

c1
(uc1

j), (7.1)

where Pc0
j = λc0

j P̄
c0
j and Pc1

j = λc1
j P̄

c1
j . The frame of the upward-facing and downward-

facing cameras are related to the extrinsic parameters

Pc1
j = RPc0

j + t, (7.2)

where the R ∈ R3 is the rotation in the downward-facing camera frame, and t is the

translation Oc1Oc0 in the downward-facing camera frame. The essential matrix E is

defined as

E = bt×cR, (7.3)

where the b·×c is a skew-symmetric function which transforms a 3D vector into a 3 × 3

skew-symmetric matrix.

According to (10.2), with ROI extraction, (7.1) can be formulated as

P̄c0
j = Rc0

k π
−1
k (uk

j), P̄c1
j = Rc1

k′π
−1
k′ (u

k′

j), (7.4)

where uk
j and uk′

j are the image coordinates of the virtual camera k and k′ towards the

same direction as camera c0 and c1. (7.2) can be formulated as

λc0
j

[
Rc0

k π
−1
k (uk

j)
]
= λc1

j R
[
Rc1

k′π
−1
k′ (u

k′

j)
]
+ t. (7.5)

For ROI extraction of the downward-facing camera, using RRc1
k′ instead of Rc1

k′ in (10.2),

which will rectify each vertical stereo camera. Thus, the traditional stereo matching

approach is satisfied with eight cropped images taken from four direction virtual stereo

systems.

7.2.1 Extrinsic Self-Calibration of Omnidirectional Stereo

To achieve extrinsic self-calibration from the epipolar constraint, an optimizable error is

formulated with the stereo extrinsic parameters. Our proposed method is based on our

previous work [45]. For points on the line Oc0Pc0 , the epipolar line is

lj = EP̄c0
j . (7.6)

53

The epipolar constraint is

(P̄c1
j)T lj = (P̄c1

j)TEP̄c0
j = 0, (7.7)

which is satisfied with scaling factor t multiplies. The epipolar error of each pair of

matched feature points P̄c0
j and P̄c1

j is defined as

||(P̄c1
j)TEP̄c0

j ||2, (7.8)

which is the square of the distance between point P̄c0
j and epipolar line l in view of the

epipolar geometry. Since the observation of detected feature points is corrupted with

noise and matching error exists, the epipolar constraint cannot be satisfied perfectly. Our

approach is to solve for R and t on the manifold that minimizes the overall epipolar error

for all the matched feature correspondences of each virtual camera. Detailed treatment

of the self-calibration approach can be found in [45]. According to (7.4), the total process

is

min
R,t

∑
k

∑
j

∥∥∥[Rc1
k′π

−1
k′ (u

′
j)
]T bt×cR [

Rc0
k π

−1
k (uj)

]∥∥∥2

,

s.t. ||t|| = 1

(7.9)

where E is substituted by bt×cR using equation (7.3), uj and u′
j are the corresponding

features. The unit norm constraint ||t|| = 1 refines the stereo calibration as 5-DOF

optimization, three for rotation R ∈ SO(3) and two for translation t ∈ S2 [45].

7.2.2 Semi-Global Optimization

Temporal cost aggregation aims to decrease the sensitivity of image noise by using multiple

measurements. But still, the simple winner-takes-all strategy will not get reliable results

since mismatch can easily occurred due to repetitive patterns. In addition, in texture-less

regions, the cost volume will contain similar cost among different depths, which leads

ambiguity in depth estimation. To this end, a smoothing-based optimization method is

adopted in our depth estimator.

Since we use enumerated planes to represent the depth image, the depth optimization

problem now becomes a plane index optimization problem. Denote K as the plane index

map that we try to optimize. The global energy function E(K) which combines the

54

pixelwise cost and smoothness constraints is expressed as:

E(K) =
∑
u∈Ω

(ESAD(u,Ku) + P1 ·
∑

uq∈N (u)

T [|Ku −Kuq | = 1] + P2 ·
∑

uq∈N (u)

T [|Ku −Kuq | > 1]),

(7.10)

where Ω is the keyframe image domain and Ku is the enumerated plane index at pixel u.

T [·] is the indicator function which returns 1 if the expression inside is true, and returns

0 otherwise. The energy function for each pixel consists of three kinds of terms: one data

term directly extracted from the cost volume and two regularization terms. The first

regularization term P1 penalizes the energy by neighbor pixels with which the enumerated

depth difference is only 1. The second regularization term gives higher penalty P2 penalty

to larger depth differences..

Since the global minimization is a NP-complete problem which can not be solved in

polynomial time, a semi-global matching (SGM) is proposed in [29]. In this work, we use

4-path SGM as it gives a good trade-off between speed and accuracy.

S(K) =
∑
u∈Ω

∑
r

Lr(u,Ku), r ∈
{
[0 1]T , [1 0]T , [0 − 1]T , [−1 0]T

}
(7.11)

Lr(u,Ku) = ESAD(u,Ku) + min

Lr(u− r,Ku)

Lr(u− r,Ku − 1) + P1

Lr(u− r,Ku + 1) + P1

mini {Lr(u− r, i) + P2}

−min
j

Lr(u− r, j), (7.12)

where the last term minj Lr(u − r, j) is used to reduce the numerical value since it is

smaller than the sum of first two terms and it is the same if u and r does not change

which guarantees the Lr(u,Ku) would not be affected. Hence, the problem is simplified

as a 1D problem along the direction r. The approximated cost function can be solved in

parallel by using GPU.

Usually, a pixel with higher gradient gains higher probability of the depth discontinu-

ity. To support this edge-aware smoothing, we adjust the penalities P1 and P2 by means

of the pixel gradient G along the SGM scaning direction:

P1 =

{
P ′
1 ·Q1 if G <= Gτ

P ′
1 otherwise P2 =

{
P ′
2 ·Q2 if G <= Gτ

P ′
2 otherwise , (7.13)

where Gτ is a certain gradient threshold, and P ′
1, P ′

2, Q1, Q2 are contant parameters.

Note that Q1 and Q2 should be set greater than 1.

55

7.2.3 Post-Processing of Depth Images

After semi-global optimization, simple winer-takes-all strategy can be used to obtain

depth by choosing the lowest cost S(K) at each pixel. However, since depth is sampled

at a discrete setting, we use parabola interpolation to obtain a better depth, which is the

extrema point between two depth samples.

f(Ku) = S(u,Ku) = aK2
u + bKu + c (7.14)

f(Ku − 1) = S(u,Ku − 1) = a(Ku − 1)2 + b(Ku − 1) + c (7.15)

f(Ku + 1) = S(u,Ku + 1) = a(Ku + 1)2 + b(Ku + 1) + c (7.16)

K∗
u = Ku −

f(Ku + 1)− f(Ku − 1)

2 (f(Ku − 1)− f(Ku) + f(Ku + 1)− f(Ku))
, (7.17)

where a, b, c are the coefficients of the parabola f(·), Ku is the plane index which reaches

the lowest cost at pixel u, K∗
u is the interpolated plane index at the extreme point. Thus

the estimated depth of pixel u can be calculated by du = 1
K∗

u·λmin
.

Two criteria are used to remove the outliers. First, for the pixel with some sampling

inverse depth which we can not compute the similarity cost since the corresponding pixel

projected in the measurement frame at that inverse depth is unknown. For those pixels

u, we mark it as undefined in the 3D cost volume at the corresponding inverse depth and

later set Lr(u,Ku) as zero in the SGM step to remove the influence of the missing cost.

And finally those pixels at the output depth image are set as undefined. Secondly, we

drop the depth if it is not the absolute minimal of the fitting parabola. Specifically, the

minimal cost locating at the 0th or the (L−1)th plane is needed to be ignored, in this case,

the pixel’s depth will be set as undefined. Also, if the sum of the cost of two neighbor

planes is smaller than the twice of the minimal cost, the corresponding pixel will be set

as undefined as well.

7.3 Global Dense Mapping

We fuse all depth images obtained at different camera poses into a global dense map

using an uncertainty-aware truncated signed distance field (TSDF) fusion approach. Our

method is developed from the open source CHISEL TSDF implementation [37]. Improve-

ments include uncertainty-aware depth fusion (Sect. 7.3.2), and algorithm parallelization

(Sect. 7.3.3).

56

Figure 7.2: A general view of TSDF.

7.3.1 Truncated Signed Distance Field (TSDF)

The whole environment can be modeled as a 3D volumetric signed distance field. The

signed distance function φ(x) : R3 → R is the distance from voxel x to the its nearest

surface, signed positive if the voxel is between the surface and the camera, negative

otherwise. Since we are only interesting in reconstructing the surface, we use truncated

signed distance field:

φτ (x) =

{
φ(x) if |φ(x)| ≤ τ

undefined otherwise , (7.18)

where τ ∈ R is the truncation distance.

Besides truncated signed distance field, we store two more values at each 3D voxel.

C(x) : R3 → R is the photometric intensity which is maintained like φτ (x). W (x) : R3 →

R is the weight representing the confidence among measurements.

To achieve better memory efficiency, CHISEL uses a two-level hybrid data structure.

The first level chunk is a spatially-hashed map, which consists of a fixed grid of N3
v voxels.

A chunk is allocated dynamically from a growing heap and indexed in a spatial 3D hash

map based on their integer coordinates. The second level is the 3D cube voxel with size

L×L×L where L is the mapping resolution in metric. The sketch is shown in Fig. 7.2.

Two depth scan fusion schemes are provided in CHISEL. Since we use the virtual pin-

hole camera in depth image estimation, projection mapping based on the camera frustum

gives better efficiency than raycasting. The camera frustum is an axis-aligned bounding

box which is depended on the camera intrinsic and the nearest plane and farthest plane

we tend to fuse. We firstly check each chunk intersected with the camera frustum and

allocated the chunk if it is the first time being checked. Then, every voxel in the chunks
57

Algorithm 1 Voxel projection mapping
1: procedure Voxel update
2: for v ∈ V do
3: z ← ||v − o||
4: d← DepthImage(π(K, v))
5: u← d− z
6: τ ← Ψ(d) . Dynamic truncation distance
7: if u ∈ [−τ, τ] then
8: φτ (v)← W (v)φτ (v)+α(u)u

W (v)+α(u)

9: Cτ (v)← W (v)Cτ (v)+α(u)u
W (v)+α(u)

10: W (v)← W (v) + α(u)

11: if u ∈ [τ + ε, d] then . Space carving
12: φτ (v)← undefined
13: Cτ (v)← undefined
14: W (v)← 0

will be enumerated in the update procedure.

In projection mapping method, each voxel would be projected onto the camera plane

and compare with the depth value from the depth image. We denote the difference

as ex ∈ R+, only difference within the truncation distance [−τ, τ] would be updated,

otherwise it would be carved. The voxel update algorithm is detailed in Alg. 1.

7.3.2 Uncertainty-Aware Fusion

Since long range visual depth estimation usually comes with larger depth uncertainty, we

encode the uncertainty by using the dynamic truncation distance Ψ(d). Define σλ as the

standard deviation of the depth measurement in the inverse depth λ, then the standard

deviation of the depth measurement in depth d can be approximated using linearization:

σd =

√
(
∂d

∂λ
)2σ2

λ, (7.19)

where σλ is set to be λmin, which is the minimal value in the inverse depth field. Thus,

the truncation function is

Ψ(d) = σd · Struncation, (7.20)

where Struncation is some constant truncation scale. Consequently, the truncation distance

is dynamic and it is able to increase as the depth observation becomes larger.

58

Figure 7.3: A reconstructed grid map with 0.05m resolution.

7.3.3 Parallelization

Note that the whole TSDF fusion computation complexity is approximately equal to the

voxel update complexity, which is proportional to the voxel count. The update procedure

for each voxel is independent, which allows us to accelerate the process by multi-threading.

We also decouple the map updating and publishing processes in order to guarantee the

availability of the most recent map for trajectory planning. Map update runs as soon as a

depth image (can be from either of the two ROI) comes, while the map publisher output

the map to the trajectory planning at a constant frequency of 10Hz. We use mutex lock

to guarantee the shared memory would not be conflicted.

7.3.4 Map Rendering for Visualization

Although a visually appealing map is not necessary for autonomous navigation, we still

provide a map rendering module that runs offline for visualization purpose. The Marching

Cube algorithm [47] is used for map rendering. For every eight voxels, we take their

centers to form a cube and the signed distance field (SDF) value of each center point

is approximately equal to its voxel’s SDF value. Consider the sign of each SDF value,

the whole cube has 256 different possible constitutions which leads 256 different ways to

separate a cube into several triangle meshes (see Fig. 7.2). A sample reconstruction result

is visualized in Fig. 7.4.

59

Figure 7.4: A reconstructed mesh map.

60

CHAPTER 8

EXPERIMENTAL RESULTS

In this chapter, we show the experiment results of our system. The first experiment

compares the state estimation with a motion capture system namely OptiTrack 1. The

rest of the experiments tests the whole autonomous flight system in both indoor and

outdoor environments. Both trajectories and the 3D reconstruction results are presented.

More details can be found in our experiment videos.

8.1 Feedback Control Using Dual-Fisheye VINS

In this experiment, we test the performance of autonomous trajectory tracking with VINS

in aggressive motion. The quadrotor is commanded to track a figure eight pattern with

each circle being 1.0 meters in radius, as shown in Fig. 8.1. The quadrotor follow this

trajectory six times continuously during experiment. The 400 Hz state estimation re-

sults achieve the real-time feedback to control the quadrotor to follow the pre-designed

aggressive trajectory, as we mentioned in Sect. 6.7.

The robustness and accuracy are of vital importance to this real-time onboard exper-

iment. The linear velocity reaches 2.3 m/s in this experiment, and the maximum tails

of quadrotor are more than 25 degrees during flying. The final drift is 0.35 m, relative

to the total 75.3 m path length, by comparing our proposed real-time estimation with

OptiTrack. The final percentage of drift is 0.46%. The details of the translation and

rotation as well as their corresponding error are shown in Fig. 8.2.

1http://optitrack.com/

61

-1
0

1
2

Trajectory

x [m]

3
4

5
1.5

1

0.5

0

-0.5

y [m]

0.6

0

0.2

0.4

1.4

1.2

1

0.8

-1

z
 [

m
]

VINS
Ground Truth

Figure 8.1: The trajectory compared VINS outputs with the motion capture.

time [s]
0 10 20 30 40 50

x
 [

m
]

-2

0

2

4

6

VINS
Ground Truth

time [s]
0 10 20 30 40 50

y
 [

m
]

-1

0

1

2

time [s]
0 10 20 30 40 50

z
 [

m
]

0

0.5

1

1.5

time [s]
0 10 20 30 40 50

x
 e

rr
o

r
[m

]

0

0.05

0.1

0.15

0.2

time [s]
0 10 20 30 40 50

y
 e

rr
o

r
[m

]

0

0.1

0.2

0.3

0.4

time [s]
0 10 20 30 40 50

z
 e

rr
o

r
[m

]

0

0.05

0.1

0.15

0.2

time [s]
0 10 20 30 40 50

y
a

w
 [

ra
d

]

-0.5

0

0.5

time [s]
0 10 20 30 40 50

p
it
c
h

 [
ra

d
]

-0.5

0

0.5

time [s]
0 10 20 30 40 50

ro
ll

[r
a

d
]

-0.4

-0.2

0

0.2

0.4

time [s]
0 10 20 30 40 50

y
a

w
 e

rr
o

r
[r

a
d

]

0

0.05

0.1

time [s]
0 10 20 30 40 50

p
it
c
h

 e
rr

o
r

[r
a

d
]

0

0.05

0.1

time [s]
0 10 20 30 40 50

ro
ll

e
rr

o
r

[r
a

d
]

0

0.02

0.04

0.06

time [s]
0 10 20 30 40 50

x
 v

e
lo

c
it
y
 [

m
/s

]

-4

-2

0

2

4

time [s]
0 10 20 30 40 50

y
 v

e
lo

c
it
y
 [

m
/s

]

-4

-2

0

2

4

time [s]
0 10 20 30 40 50

z
 v

e
lo

c
it
y
 [

m
/s

]

-1

-0.5

0

0.5

Figure 8.2: The results compared VINS outputs with the motion capture. The top four
rows are translation and orientation values and their corresponding error. The bottom
row is the velocity plot.

8.2 Dense Depth Estimation

Instead of directly evaluating the precision of the dense 3D reconstruction, we do com-

parison on depth images which mainly affect the performance of the reconstruction.

62

We first show the raw images, the corresponding omnidirectional ROI images, disparity

map and the point loud in one capture in Fig. 8.4. Fig. 8.4(a) shows the dual-fisheye

omnidirectional stereo system, only construct with two fisheye images with 245-degree

FoV; Fig. 8.4(b) shows the original grayscale fisheye images with 1280 × 960 resolution;

Fig. 9.19(a) shows 4 rectified pinhole images of the overlapping views, only images from

upward camera is shown; Fig. 9.19(d) shows 4 disparity images obtained by semi-global

block matching (SGBM) algorithm. Fig. 8.4(e) shows the omnidirectional pointcloud

obtained from the disparity images. Floor and ceiling are removed for easy viewing.

The omnidirectional ROI images and the corresponding depth images are shown in

Fig. 8.3. The depth images are noisy because of the disgusting distortion and the image

intensity contrast, via the lens quality.

(a) Rectified ROI images of the upward-facing camera

(b) Depth image of the Fig. 8.3(a)

Figure 8.3: Image of indoor experiments.

The disparity map and the point cloud generated with one capture are shown in

Fig.8.5: (a) is the real scenes; (b) is the disparity map from the first person view; (c)

is the point cloud from the same view of (b); (d) is the point cloud from the top-down

view, shows the whole omnidirectional environments; (e) is the point cloud from Bird’s-

eye view of different capture; (f) is the point cloud of the same scene by 3D LiDAR, as

the reference. In the Fig.8.5, “A”, “B” and “C” figure out the corresponding objects.

63

(a) Omnidirectional stereo system (b) Raw images

(c) ROI images of upward camera

(d) Disparity images

(e) Pointcloud

Figure 8.4: Results of the omnidirectional stereo.

64

Figure 8.5: Stereo reconstruction result using a pair of image from a single capture.

65

(a) ROI images of laboratory envieonment

(b) Disparity images of laboratory envieonment

(c) Disparity images of outdoor envieonment

(d) Disparity images of outdoor envieonment

(e) Disparity images of hall envieonment

(f) Disparity images of hall envieonment

Figure 8.6: Indoor and outdoor experiments using SGBM for stereo matching.

66

The fused global map is shown in Fig. 7.4. The mesh visualization is rendered offline

with 0.05m voxel map resolution. The dense map is not very accurate for particulars

reconstruction, still, it is sufficiently dense and satisfies autonomous navigation.

8.3 Indoor Experiment

In order to substantiate that our system is able to handle small-scale indoor autonomous

navigation in complex environments, we randomly position some obstacles in the experi-

ment area. The nearest distance between obstacles is reached 1 m, as shown in Fig, 8.7.

After setting the destinations, the quadrotor flies through the feasible space, pass by while

avoiding surrounding obstacles with full autonomy.

For onboard testing in the indoor environments, a receding horizon replanner based

on the local control property of B-spline is used to generate the navigation trajectory in

[14]. The local planning parameters are set as follows: the planning time step is 0.35s; the

maximum velocity and maximum acceleration are set to 1.2m/s and 2.0m/s respectively.

The number of features in the VINS module is set as 175, covered the whole spherical

perception region. In the mapping module, the voxel map resolution is set as 0.15m

so that satisfying the high efficiency because of less mapping details requirement in the

motion planning module. The average time consuming of the full system is measured in

Table 8.1.

All the modules including localization, mapping, and planning can be launched on the

ground and initialize itself. After taking off, the omnidirectional mapping module senses

the surrounding environments without any prior knowledge. The quadrotor starts to fly

to the destination point following the optimized trajectory autonomously. The generated

3D construct of the surrounding environments is fed into the trajectory planning module

via the voxel map in real time so that the trajectories are generated satisfy both safety

and smoothy. The perception system keeps sensing and if the newly updated map has a

Table 8.1: Approximated Timing Statistics
Module Time Consumption (ms) Frequency (Hz)

ROI extraction 8 15
VINS - Front-End 35 15
VINS - Back-End 55 10
SGBM Depth Map 20 10
TSDF Fusion 40 10

67

collision possibility with the executing trajectory, a new safe trajectory will be generated

immediately by the replanning system. More details of the trajectory planning and re-

plan can be found in [14]. A series of snapshots of the realtime flight experimental results

are visualized in Fig. 8.8 and Fig.8.9.

(a) (b)

Figure 8.7: The narrow environment in the indoor experiments.

The average speed during this experiment is around 1.1m/s, while the highest velocity

is about 2.2m/s. For a robust autonomous application, we critically concern the system

delay property. As we mentioned in Table 8.1, overall average delay of the perception

system is around 180ms, which is enough for our demonstration of autonomous navigation

but still can be improved. The VINS pose estimation runs at 10Hz, however, a faster 400

Hz estimated poses from IMU propagation can be used to feedback control which will gain

less delay. Without considering the VINS pose estimation, the controller earns a real-time

feedback. The whole system delay depends on the mapping module, since calculating four

depth images and fuse them will cost a lot.

More detail about the indoor fast obstacle avoidance experiments can be found in our

video (https://gaowenliang.github.io/).

(a) 1s (b) 8s (c) 11s

68

(d) 20s, arrived the target (e) 23s (f) 28s

(g) 31s (h) 36s (i) 42s, back to the start point

Figure 8.8: The snapshots of the map and the trajectories during the flying mission.

We verify our system performance in both localization, mapping, and planning in

both sparse and complex environments. Dozens of experiments have been demonstrated

to show the robustness of our system.

Keep working in the complex and narrow environments is a challenge even for most

state-of-the-art autonomous micro aerial robots [44]. Since most of the feasible space is

occluded by obstacles, more perception coverage course more safety, especially for explo-

ration. With the dual-fisheye omnidirectional system, all the surrounding obstacles can

be detected even if such obstacles are parallel or in the back of the quadrotor.

Thanks to the omnidirectional perception, our system is able to travel in any direction

safely. We demonstrate the moving frontward and backward. In the experiments, the

aerial robot flies to the destination then comes back to the start point, as shown in Fig. 8.8

and Fig. 8.9. The back moving trajectory is generated in real-time with considering the

backward perception, not only just follow the inverse of the frontward moving path. As

shown in Fig. 8.8, the waypoints are different in frontward and backward segments.

69

(a) 0s (b) 2s (c) 9s

(d) 15s (e) 21s, arrived the target (f) 52s

(g) 27s (h) 29s (i) 37s

(j) 41s, back to the start point

Figure 8.9: Another experiment results in the same environments as in Fig. 8.8.

70

8.4 Autonomous Flight in Outdoor Environments

We validate the performance of our autonomous flight system in a forest-like outdoor

environment. Since most of the obstacles in the forest-like environments are trees, the

size of the obstacles may be smaller than in the indoor environments.

We first demonstrate the grid map generated by our proposed dual-fisheye omnidirec-

tional perception system in Fig. 8.10(a). The environments are constructed with 0.15m

voxel, which benefits calculation efficient and also satisfies safety navigation. We com-

pared the map results with a 3D LiDAR system in [76] (shown in Fig. 8.10(b)). The

proposed dual-fisheye system provides a high-quality map for autonomous navigation and

denser than the LiDAR method.

(a) Map by dual-fisheye system (b) Map by LiDAR in [76]

Figure 8.10: The raw grid map in a forest-like outdoor environment.

The aerial robot detects and avoids the thin tree branches and follows the trajectory

which is generated in real-time from planning module.

More experimental trials and online visualization can be found in the video attach-

ment.

(a) A closeup during shuttling trees (b) 0s

71

(c) 2s (d) 10s (e) 16s

(f) 19s (g) 24s (h) 30s

(i) 31s (j) 43s, arrived the farest target (k) 54s

(l) 62s (m) 78s (n) 81s, back to the start

Figure 8.11: A experiment shuttling trees in the forest-like environments.
72

(a) A closeup during shuttling trees

(b) 1s

(c) 10s

(d) 20s, view point changed

73

(e) 30s

(f) 43s, arrived the target

(g) 69s, replan return trajectory

(h) 86s

74

(i) 108s

Figure 8.12: Autonomous navigation in a forest-like outdoor environments.

Autonomous flight test with an vison-based quadrotor. The trajectory generated for

the navigation is shown in Fig. 8.13(a), and the overview of the experiment is shown in

Fig. 8.13(b).

(a) Trajectory generated in
flight.

(b) Overview of the quadrotor path.

Figure 8.13: Autonomous flight test with an vison-based quadrotor.

For the same outdoor environments, we compare the flight corridor and the trajectory

generated using the dual fisheye cameras in Fig. 8.14(a), and using the Velodyne LiDAR in

Fig. 8.14(b). The vision-based method provide a more dense grid map of the environment.

However, outliers in the vision-based mapping system occupy much free space and result

in a longer flight corridor and trajectory.

75

(a) Planning with the dual fisheye cameras.

(b) Planning with the LiDAR.

Figure 8.14: Comparison of the flight corridor and the trajectory generated using the dual
fisheye cameras, and using the Velodyne LiDAR.

76

CHAPTER 9

CAMERA CALIBRATION

In this chapter, we will introduce the camera parameters calibration of the camera models

in Chapter 4, including camera intrinsic coefficients, vignetting coefficients and extrinsic

parameters between cameras.

9.1 Camera Intrinsic Calibration

With the camera model, five projection parameter A11, A12, A22, cx and cy, and six

polynomial parameters, η2, η3, η4, η5, η6 and η7, forming the intrinsic parameter κ, need to

be optimized:

κ = [A11 A12 A22 cx cy η2 η3 η4 η5 η6 η7]
T . (9.1)

With the formulation of the camera projection function π(·), the reprojection error of a

3D point is defined as the error corresponding to the distance between a projected point

and a measured point in the image coordinates

e = u− π(RPw +T), (9.2)

where Pw is a point in the world frame, which projects to u; R is Rc
w, the orientation from

world frame to the camera frame, and T is Tc
w, the translation in the camera frame. Such

parameters will be estimated by the PnP method during calibration. Camera calibration

is to minimize the sum of the Mahalanobis norm of the re-projection error of all the

collected points:

min
κ,R,T

∑
j

‖uj − π(RPwj +T)‖2 , (9.3)

where j is the index of points used for calibration.

In particular, the polynomial coefficient ηi can be initially guessed by fitting the “F-

Theta” distortion curve with a polynomial in (4.3) before calibration. During camera

calibration, the initial guess of the polynomial coefficients will not be far from the true

value.
77

(a) (b)

Figure 9.1: The collection images for the camera intrinsic calibration

After analyzing the performance of the camera intrinsic calibration, we find that the

most error of calibration is coming from chessboard images collection and chessboard

points detection. We first implement a collection tool to pick out the detected images

from the image array and save. Than do calibration with a two times calibration.

Images Collection Tool The images collection tool is to detect the chessboard form an

image array and save the detected images. The distribution of collected chessboard points

is drawn in a image to make sure the collected points are uniform and full of the camera

imaging area. The collection images for the camera calibration is shown in Fig. 9.1.

Fig. 9.1(a) shows a sample image for the camera calibration. The red points is the

detected chessboard points. The Fig. 9.1(b) shows the sample distributed of collected

chessboard points of four hundred images.

Two times calibration Assume that most of the chessboard points in the collected images

can be detected normally, and few of the points cannot be detected correctly. After the

first calibration, we get the optimized intrinsic parameters. The parameters may be

influenced by the incorrect-detected points but still good enough for formulating the

projection. With such intrinsic parameters, the reprojection error of the correct-detected

points is much smaller than the incorrect-detected points. Thus we set a reprojection

error threshold and drop the points whose reprojection error is bigger than the threshold

then calibrate again. This process is called two times calibration. The sample image is

shown in Fig. 9.2. The green points are detected chessboard points and the red points

are the reprojected estimate points. First calibration, we find that exist wrong detection
78

(a) (b)

Figure 9.2: The sample image of two times calibration.

as shown in Fig. 9.2(a). Remove the wrong detection points as shown in Fig. 9.2(b) and

calibration again.

Figure 9.3: The chessboard points detect outlier percentage via the field-of-view.

The chessboard points detect outlier percentage via the field-of-view is shown in

Fig. 9.3. While the FOV is less than 150 degrees, there are few outlier points. How-

ever, the outlier percentage will increase with the field-of-view. As for the camera with

280-degree FOV, the outlier ratio is almost around 7%.

9.2 Camera Vignetting Calibration

With the camera vignetting model in equation (4.13), six order polynomial with three

none-zero coefficients is able to fit the vignetting well, thus k = 3. For a typical camera

lens, three vignetting parameter β1, β2, β3 and the intensity of the camera principle point

79

I0, forming the vignetting parameter κ, need to be optimized:

κ = [I0 β1 β2 β3]
T . (9.4)

With the formulation of the pixel intensity, the intensity error is defined as the error

corresponding to the distance between the real pixel intensity of calibration pattern and

the estimated pixel intensity:

e = I(r)− I0(1 +
3∑

i=1

βir
2i), (9.5)

Vignetting calibration is to minimize the sum of the Mahalanobis norm of the intensity

error of all the collected points:

min
κ

∑
j

∥∥∥∥∥I(rj)− I0(1 +
3∑

i=1

βir
2i
j)

∥∥∥∥∥
2

, (9.6)

where j is the index of points used for calibration.

Consider the vignetting model formulate the intensity of each pixel, the calibration

relies on the environment with a static lighting and the pattern which is a flat white object

with Lambertian reflectance. Therefore the difficulty of the vignetting model calibration

is how to collect data.

Data Collection According to [2], a sheet of printer paper attached to a desk in a typical

office is suitable. However, if we collect the points from the image of a sheet of white

paper, it is not easy to detect the pixel is the image of paper or not. Considering the

intensity data collection issue, we use chessboard as the calibration pattern. The white

grid of the normal chessboard can be regarded as flat Lambertian reflectance surface.

And we just need to control the light of the environment as static and unified as possible.

The chessboard is easy to detect and we collect the intensity of the center of every white

grid. The image set for vignetting collection is almost the same as the calibration set of

camera intrinsic calibration. As shown in Fig. 9.4, the chessboard grids are detected and

the green points figure the points which will be used to do vignetting calibration and the

red points will be removed. With a large number of images, the white grid points are

more sparse than collect with white paper. It is helpful to avoid noise and calculation

acceleration.

80

Figure 9.4: A sample image of vignetting calibration data.

Figure 9.5: A sample image of vignetting calibration data.

9.3 Camera Extrinsic Calibration

To achieve extrinsic self-calibration from the epipolar constraint, an optimizable error is

formulated with the stereo extrinsic parameters. Our proposed method is based on our

previous work [45]. As shown in Fig. 9.5. for points on the line Oc0Pc0 , the epipolar line

is

lj = EP̄c0
j . (9.7)

The epipolar constraint is

(P̄c1
j)T lj = (P̄c1

j)TEP̄c0
j = 0, (9.8)

which is satisfied with scaling factor t multiplies. The epipolar error of each pair of

matched feature points P̄c0
j and P̄c1

j is defined as

||(P̄c1
j)TEP̄c0

j ||2, (9.9)

which is the square of the distance between point P̄c0
j and epipolar line l in view of the

epipolar geometry. Since the observation of detected feature points is corrupted with

81

noise and matching error exists, the epipolar constraint cannot be satisfied perfectly. Our

approach is to solve for R and t on the manifold that minimizes the overall epipolar error

for all the matched feature correspondences of each virtual camera. Detailed treatment

of the self-calibration approach can be found in [45]. According to (7.4), the total process

is

min
R,t

∑
k

∑
j

∥∥∥[Rc1
k′π

−1
k′ (u

′
j)
]T bt×cR [

Rc0
k π

−1
k (uj)

]∥∥∥2

,

s.t. ||t|| = 1

(9.10)

where E is substituted by bt×cR using equation (7.3), uj and u′
j are the corresponding

features. The unit norm constraint ||t|| = 1 refines the stereo calibration as 5-DOF

optimization, three for rotation R ∈ SO(3) and two for translation t ∈ S2 [45].

9.4 Camera Intrinsic Calibration with Screen

The visual systems are used in the industrial applications. For the industrial users, the

camera calibration is an essential technique. However, with the developing of the au-

tonomous technology, the vision-based system will be used widely such as autonomous

driving and others. It is necessary to improve a calibration approach which can work

without specially trained staff.

As for traditional camera intrinsic calibration, there exist a gap: The raw data for

calibration is collected by artificial capture. Thus, the distribution of calibration points

is all controlled by a human.

In order to collect enough data for calibration, there would be some movements of

the camera or the calibration markers (chessboard, random point board), to change the

relative pose. That means the calibration result is unstable because of without the uniform

collection movements. And if with the movements of cameras, the rolling shutter cameras

cannot get good images. With the movements of the calibration, markers would cause

blur and geometry distortion.

For the industry application, the calibration data should be reliable. And for the

cameras used in factories and consumer products, the properties of the cameras are similar.

Thus, as for a production line, the intrinsic calibration station can be specially designed

for the cameras of products.

82

Figure 9.6: The points data distribution of screen calibration.

Figure 9.7: Screen calibration system.

In this work, we present a novel solution to camera calibration constructed with

screens. With screens display pixel points one by one, the whole calibration pattern

is the dense points captured by the camera. The calibration accuracy is comparable with

the transitional method with chessboard pattern, so the camera model can be abstract

with a spline mesh, map the relationship between the ray vector and pixel. The model is

able to describe all kinds of camera distortions, including radial distortion, tangent distor-

tion, or other distortions. Unlike a variety of existing methods, the calibration operation

of our method needs little artificial interaction. Thus it is easy to operation, and do not

need a special training for users. Also, the calibration of our method requiring only a

limited amount of space, so it can be well applied in industrial environments.

Data Collection The camera intrinsic calibration is to refine the parameters of a camera

model which describe the relationship between the 3D world points and the 2D pixel

83

Figure 9.8: The pipeline of screen calibration.

coordinates. The data for camera intrinsic calibration is a series of images capturing a

manufactured calibration pattern. The 2D pixel coordinates are detected from the images

and the 3D world points are known because of the calibration pattern.

According to Fig. 9.1(b), it is not easy to get a unified 2D points distribution for a

traditional chessboard pattern method. As for nonlinear optimization problem, which is

the essence of camera calibration, the data distribution influences the results by weight:

the data denser, the weight greater. Using a screen as a calibration pattern, it is obvious

to generate a unified data distribution with the screen control. We can light one pixel of

the screen and detect the light pixel from the image. It is clear to create the point-to-

point correlation. And the data can be denser and more unified: a screen can provide a

maximum 2 million pixel-wise calibration pattern with a 1920 × 1080 resolution. As for

a 12 × 8 chessboard, the number is 96. We downsample the screen points data and use

thousands of points for calibration, the distributed image is shown in Fig. 9.6.

The system is shown in Fig. 9.7, the rotation and the translation between the camera

and the screen is fixed. The screen calibration system includes a screen, an embedded

trigger device, and the camera, all connect to a computer. The computer renders an image

with a light point with known coordinate at first, shows in the screen. Then a trigger

signal is sent to the embedded trigger device. The embedded trigger device control the

camera to capture an image with the shutter trigger. Finally, the captured image is

collected by the computer. The system pipeline is shown in Fig. 9.8.

The screen renders frequency is around 60-144 Hz. Thus during the render images

changed, it is reasonable to capture an image mixed with this image and the last image

because of the inaccurate trigger control. To avoid this, we render the images with

incremental light points: there is one more light point shown in the screen than the last

84

Figure 9.9: The raw images of screen calibration.

image. The sample of raw images are shown in Fig. 9.9, the left image is kth captured

image Mk and the right image is the k + 1th captured image Mk+1. The k + 1th light

point in the image uk+1 can be detected in the difference image Md
k+1 = Mk+1 −Mk.

The difference image requires to be preprocessed because of the image intensity noise

in order to precisely detect the light points:

Mp
k+1 = αMd

k+1 + β, (9.11)

where α is the image intensity gain and β is the image intensity bias.

Figure 9.10: The illustration of lens projection.

Light Point Detect In the calibration system, the camera is mounted close to the screen,

the distance is less than 1m. Since the camera is focused at a farther distance (≈ 10m),

the projection of the light pixel points will amount to circular disks on the sensor instead

of a sharp point, named as circles of confusion (CoC) [33]. The size and shape of the CoC
85

are depended on the distance of the holes to the sensor and the focal plane and the shape

and size of the camera aperture.

The lens distortion might influence the shape of the CoC such that it deviates from a

perfect circle. Consider the shape of CoC is influenced via the distortion, the projected

location of a point is estimated by fitting a 2D Gaussian function to the image blob.

Fig 9.11 shows a sample of a fitted Gaussian function and the estimated the center of one

blob. Since the screen pixel object can be assumed to have infinitesimally small size, as

shown in Fig. 9.10, this method does not suffer from foreshortening effects known to pose

challenges for location estimation using spatial fiducials such as circular feature points

[36].

(a) (b)

Figure 9.11: The image of the projected point.

The intensity of the CoC is described as a Gaussian distribution:

G[uc|σu] =
1

σu

√
2π

e−u2
c/2σ

2
u ,

G[vc|σv] =
1

σv

√
2π

e−v2c/2σ
2
v ,

(9.12)

where the uc and vc is uc = [uc vc]
T , the sub-pixel image coordinate of the light point,

σu and σv is the standard deviation of the Gaussian function. For each light point, we

estimate the uc by fitting a Gaussian function of the blurred intensity profile.

The back-end of the screen calibration is to fit the model with 3D points and the

detected 2D points, similar with the process with chessboard methods. The calibration is

86

to minimize the sum of the Mahalanobis norm of the re-projection error of all the collected

points:

min
κ,R,T

∑
j

‖uj − π(RPwj +T)‖2 , (9.13)

where j is the index of points used for calibration.

Figure 9.12: The illustration of fisheye calibration.

Since the calibration pattern should cover all of the sensing region, for camera with

ultra-wide filed-of-view such as fisheye cameras, only one screen is not enough. A system

with 5 to 6 screen as shown in Fig. 9.12.

9.5 Calibration Results

9.5.1 Intrinsic Calibration Results

Our proposed monocular camera model and its calibration approach conform to the ultra-

wide FOV fisheye lens. We test the calibration, analyze the calibration result and show a

uniform distribution of the error.

We show calibration results for two different cameras, an mvBlueFOX-MLC202bG1

with an image resolution of 1280× 960 and a 235-degree FOV lens, and an mvBlueFOX-

MLC202aG with an image resolution of 1280 × 1024 and a 245-degree FOV lens. The

1https://www.matrix-vision.com

87

points for calibration are detected and collected from images of a chessboard with 12× 9

grid and squares of 70 mm. We use the open source chessboard detector from OpenCV2,

as shown in Fig. 9.1(a). We modify the CamOdoCal in [27] as our calibration toolbox,

based on Ceres Solver3. The difference between the polynomial-fitted designed radial

0 0.5 1 1.5 2 2.5

Incident angle (rad)

-0.4

-0.2

0

D
if
fr

e
n
c
e
 (

%
)

Figure 9.13: The difference between design and calibration, less than 0.5%.

distance curve (4.3) and calibrated one is less than 0.5%, as shown in Fig. 9.13, and the

calibrated radial distance is shown in Fig.4.3(b). The exact accuracy of the polynomial

fit is unknown due to the lacking of the ground truth.

The ultimate goal of the calibration is to improve projection and back projection and

offer accurate undistorted process. After calibration with 10 images, the radial distribu-

tion of the error versus the projected radial distance of both cameras is shown in Fig. 9.14.

Fig. 9.14(a) and Fig. 9.14(b) shows the reprojection error of the 235-degree FOV camera

and the 245-degree FOV camera. The blue curve depicts the median residual error in

different segments of the radial distance.

The convergence of the average reprojection error and root mean square (RMS) re-

projection error is shown in Fig. 9.14(c) and Fig. 9.14(d), and we also add the result

of a unified camera model of Mei [52] as the reference. We test the calibration with 10

images to 50 images. Both Mei model and proposed model are accuracy enough since

the average reprojection error is less than 0.4 pixels, however, our proposed model has

lower reprojection error for ultra-wide FOV fisheye camera. The average reprojection

error of our proposed model of each camera is around 0.2 pixels. The calibration result

is stable, and the fluctuation in the average reprojection error of each camera is less than

0.05 pixels. The RMS residual error fluctuates when insufficient images are used since the

chessboard detection and camera pose estimation are not accurate due to the distortion

in some images.
2http://opencv.org/
3http://ceres-solver.org/

88

0 100 200 300 400 500

r (pixel)

0

0.2

0.4

0.6

0.8

1
E

rr
o

r
(p

ix
e

l)

(a) Error of 235-degree FOV lens.

0 100 200 300 400

r (pixel)

0

0.2

0.4

0.6

0.8

1

E
rr

o
r

(p
ix

e
l)

(b) Error of 245-degree FOV lens.

10 20 30 40 50

Num of image

0.1

0.15

0.2

0.25

0.3

0.35

0.4

E
rr

o
r(

p
ix

e
l)

235-degree proposed

245-degree proposed

245-degree MEI

(c) Average error.

10 20 30 40 50

Num of image

1

2

3

4

5

6

7

E
rr

o
r(

p
ix

e
l)

235-degree proposed

245-degree proposed

245-degree MEI

(d) RMS error.

Figure 9.14: Fisheye camera intrinsic calibration result.

As discussed in Sect. 9.1, the two times calibration is needed, especially for wide

FOV cameras. The reprojection error of the two times calibration is shown in Fig. 9.15.

Fig. 9.15(a) shows the average reprojection error in pixel coordinate and Fig. 9.15(b) shows

the RMS error. Both errors decrease with the outlier removed in second calibration and

the wider FOV, the more improvements.

9.5.2 Vignetting Calibration Results

We show the vignetting calibration results for two different cameras, an mono camera

PointGrey CM3-U3-13Y3M-S-BD4 and a color camera PointGrey CM3-U3-13Y3C-S-BD5

with an image resolution of 1280× 1024.

The data collection is shown in Fig .9.4, almost same as camera intrinsic calibration.

4https://www.ptgrey.com/chameleon3-13-mp-mono-usb3-vision-board-level-on-semi-python-1300
5https://www.ptgrey.com/chameleon3-13-mp-color-usb3-vision-board-level-on-semi-python-1300

89

(a) (b)

Figure 9.15: The reprojection error of some sample cameras.

However, the light should be sure as static and unified as possible. After optimized, the

parameters of mono camera and color camera is shown in Table. 9.1. The results are

visualized inFig. 9.16. Fig. 9.16(a) and Fig. 9.16(c) show the vignetting gain curve of the

mono camera and the color camera. Fig. 9.16(b) and Fig. 9.16(d) show the vignetting

distribution in the whole images of the mono camera and the color camera due to the

calibration results.

After the vignetting calibration, the vignetting of camera can be removed with the

reverse process of equation (4.12) and the vignetting gain compensation, as shown in

Fig. 9.17. The source image with huge vignetting as shown in Fig. 9.17(a), whose center

is light and periphery is dark. The image removed vignetting is shown in Fig. 9.17(b), the

intensity is more uniform. The vignetting rectified color image is shown in Fig. 9.17(d)

from raw image Fig. 9.17(c). However, because of the huge vignetting and the digital

sampling of the camera, the corners are so dark that the information almost lost and

cannot be restored.

Consider the vignetting rectified during ROI extraction discussion in Sect. 4.4, the

ROI image is better as shown in Fig. 9.17. The raw fisheye image is shown in Fig. 9.17(e)

and the ROI image is shown in Fig. 9.17(f). The top image is the ROI image of Fig. 9.17(e)

without vignetting rectified, and the bottom image is the vignetting compensated ROI

Table 9.1: Vignetting Parameters of Mono Camera and Color Camera
Camera Channel I0 β1 β2 β3

Mono - 177.428 3.7255× 10−4 −3.2368× 10−9 −5.2368× 10−16

Color Bule 253.664 8.1332× 10−5 −9.4155× 10−10 6.9572× 10−16

Color Green 252.190 1.6402× 10−4 −1.5552× 10−9 1.4890× 10−15

Color Red 251.705 1.5510× 10−4 −1.0805× 10−9 5.7441× 10−16

90

(a) (b)

(c) (d)

Figure 9.16: Vignetting calibration results of color camera with three channels.

image of upper one.

We make our implementation of Vignetting Model open-sourced6.

9.5.3 Extrinsic Calibration Results

The extrinsic parameters are optimized by our proposed self-calibration approach, and

achieves an accuracy that the standard block matching (BM) algorithm operates and

can produce the disparity map, as Fig. 9.19 shows. In the scene shown in Fig. 9.19(a),

the disparity map computed using initial stereo extrinsic parameters, by block matching

(BM) algorithm is shown in Fig. 9.19(b) and the disparity map computed using optimized

extrinsic parameters is shown in Fig. 9.19(c).

6https://github.com/gaowenliang/vignetting_calib

91

(a) Raw mono image (b) Mono image with vignetting rectified

(c) Raw color image (d) Color image with vignetting rectified

(e) Raw fisheye image (f) ROI image.

Figure 9.17: Sample of vignetting removed image.

Since traditional stereo calibration methods are hard to apply on the proposed omni-

directional stereo system, and the ground truth is also unknown, we do not have the quan-

titative comparison. We include indoor static and dynamic scenes, as shown in Fig. 9.18.

The matched features are preprocessed by RANSAC filtering to drop some outliers fea-

92

Figure 9.18: Omnidirectional features matching for self-calibration.

tures. We convert the relative rotations R to Euler angles for graphical presentation, as

shown in Table 9.2.

(a) Scene

(b) Disparity map without calibration by BM

(c) Disparity map with calibration by BM

(d) Disparity map with calibration by SGBM

Figure 9.19: Disparity map comparison with extrinsic parameters calibration.

The qualitative results of dense stereo matching of the omnidirectional stereo system

using the extrinsic parameters from our marker-less calibration method are shown in

Fig. 9.19(d). Our approach significantly improves the stereo matching quality compared

93

to the initially incorrect extrinsic parameters.

9.5.4 Screen Calibration Results

We test the screen calibration of two cameras, a perspective camera with limit filed-of-view

and a fisheye camera with 235-degree field-of-view.

The calibration system is shown in Fig, 9.7. The calibration observation distribution of

the perspective camera is shown in Fig. 9.6. And the calibration observation distribution

of the fisheye camera is shown in Fig. 9.20.

Figure 9.20: The points data distribution of screen calibration of fisheye camera.

After calibration with the screen system, we test the calibration result. We collect

some chessboard images, detect the chessboard points and calculate the reprojection error

of the detected points via our screen calibration intrinsic parameters. The reprojection

error is shown in Fig, 9.21. For perspective camera, the average reprojection error is 0.15

pixel by 171 chessboard images. For fisheye camera, the average reprojection error is

0.45 pixel by 124 chessboard images. The result of screen calibration is comparable with

transitional chessboard calibration.

Table 9.2: Extrinsic Parameters of each Fisheye Camera
Axis x y z

Rotation (degree) 177.428 -0.751351 -179.008
Translation (m) -0.0224503 0.0194018 -0.283451

94

0 20 40 60 80 100 120 140 160

Test images

0

0.1

0.2

0.3

0.4

0.5

0.6

R
e

p
ro

je
c
ti
o

n
 E

rr
o

r
(p

ix
e

l)

(a) Perspective camera

0 20 40 60 80 100 120

Test images

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

R
e

p
e

o
je

c
ti
o

n
 E

rr
o

r
(p

ix
e

l)

(b) Fisheye camera

Figure 9.21: The reprojection error of the chessboard.

95

96

CHAPTER 10

FSR:FAST SPHERICAL RETINA KEYPOINT

(a) BRIEF [8] (b) BRISK [40] (c) FREAK [1] (d) DAISY [71]

Figure 10.1: Patch of typical features.

Figure 10.2: 3D graph of the resolution via pixels of the full image from the 240◦-FOV
camera, ◦/pixel.

traditional feature detectors and descriptors (such as SIFT [48] , SURF [4] , BRIEF

[8] , ORB [64] , BRISK [40] , FREAK [1] , and DAISY [71]) are designed to work on the

image from perspective cameras. They may not work on spherical images.

10.1 Sampling on Unit Sphere

For spherical images, the feature detect and the descriptor should sampling on the unit

sphere domain.

97

(a) The circular patches on the sphere (red
blobs)

(b) The circular patches are projected to the
spherical images (red ellipses). The circular

patches are distorted as ellipses;

(c) The distorted circular patches at different FOV (0◦, 30◦, 60◦, 90◦, 120◦, 150◦, 180◦, 210◦, 240◦)

Figure 10.3: The illustration of the distorted circle pattern in spherical images.

10.2 Feature Detection

10.2.1 Accelerated Segment Test

The center of a circular area is used to determine brighter and darker neighbouring pixels.

Match in ROI images, on plane, virtual perspective pinhole cameras [51] and [21]. ASIFT:

A new framework for fully affine invariant image comparison [54].

SUSAN [70] and FAST [63] use a Bresenham’s circle as test pattern. The criteria

for a pixel to be a corner according to the accelerated segment test (AST) is as follows:

there must be at least S connected pixels on the circle which are brighter or darker

than a threshold determined by the center pixel value. The AST applies a minimum

difference threshold (t) when comparing the value of a pixel on the circular pattern with

the brightness of the nucleus. A large t-value results in few but therefore only strong

corners, while a small t-value yields also corners with smoother gradients.

In [63], Rosten uses a machine learning method, to find the best tree based on training

data of the environment where FAST is applied. The decision tree learning used by the

FAST algorithm builds a ternary tree with possible pixel states “darker”, “brighter” and

98

Figure 10.4: A negative-true case of the FAST feature detector ([63]).

(a) Different mask sizes for the AST: 8(yellow),
12 (red) and 16 (blue) pixels mask.

(b) A diamond shaped 12 pixels mask (red).

Figure 10.5: The illustration of the mask of the green nucleus point of AST. Left: raw
mask; right: distorted mask.

“similar”. Consequently, the configuration space increases by the addition of two more

states: “not brighter” (b) and “not darker” (d). Using a similar notion as FAST [63], the

state of a pixel relative to the nucleus n, denoted by n → x, is assigned as follows:

Sn→x =

d, if In→x < In − t (darker)
d̄, if In→x ≮ In − t ∧ S ′

n→x = u (not darker)
s, if In→x ≮ In − t ∧ S ′

n→x = b̄ (similar)
s, if In→x ≯ In + t ∧ S ′

n→x = d̄ (similar)
b̄, if In→x ≯ In + t ∧ S ′

n→x = u (not brighter)
b, if In→x > In + t (brighter)

(10.1)

where S ′
n→x is the preceding state, I is the brightness of a pixel and u means that the

state is still unknown. This results in a binary tree representation, as opposed to a ternary

tree, allowing a single evaluation at each node.

99

The challenge of the feature detection on ultra-wide filed-of-view camera and omnidi-

rectional cameras:

1. Nonsensitive to noise due to the vignetting and unbalance of the radiometric re-

sponse;

2. Rotation invariance and scale invariance due to the distorted patch;

Exist methods:

1. Sampling on the sphere, computation cost;

2. Fixed size patch, not suitable for full images;

10.2.2 Distort Patch

Pixel Patch Remap We introduce an pixel patch remap method for calculate the dis-

torted path with as acceptable time. A three-step patch remap is used: 1) to back project

each pixel of the standard patch to a unit sphere by π−1
c (·), form a spherical path on the

unit sphere; 2) to slide the spherical patch to required place on the unit sphere; 3) to

project these vector of spherical patch to the image plane by πc(·), form the distorted

2D patch (shown in Fig. 7.1(a)). The transformation between the standard patch to the

required patch is:

uc = πc(Rπ−1
c (uc

0)), (10.2)

where πc(·) and π−1
c (·) is the projection function and the back projection function of

the fisheye camera, with uc being the pixel coordinates of the fisheye image. uc
0 is the

standard patch on the pixel coordinates, and R formulate the related transformation of

the spherical patch “slide” on the unit sphere.

Mask Size In [70] it is noted that the mask size does not influence the feature detection

as long as there is no more than one feature within the mask.

In [50], the author discussed that the Lager mask size, they are therefore slower for

two reasons: 1) the processing of a large pattern is of course computationally more expen-

sive, and 2) they need to evaluate many features for non-maximum suppression. Smaller

patterns better preserve the locality constraint of a corner. the features are too close,
100

so that a part of them get lost after non-maximum suppression. If the source pattern is

small, it is possible that the mapped points cannot form a pattern in pixel coordinate

after distortion.

10.3 Feature Descriptor

Coarse-to-fine descriptor We construct our binary descriptor F by thresholding the dif-

ference between pairs of receptive fields with their corresponding Gaussian kernel. In

other words, F is a binary string formed by a sequence of one-bit Difference of Gaussians

(DoG):

F =
∑

0≤a<N

2aT (Pa), (10.3)

where Pa is a pair of receptive fields, N is the desired size of the descriptor, and

T (Pa) =

{
1 if (I(P r1

a)− I(P r2
a)) > 0,

0 otherwise,
(10.4)

with I(P r1
a) is the smoothed intensity of the first receptive field of the pair Pa.

Orientation Let G be the set of all the pairs used to compute the local gradients:

O =
1

a

∑
P0∈G

(I(P r1
o)− I(P r2

o))
P r1
o − P r2

o

‖P r1
o − P r2

o ‖ (10.5)

where M is the number of pairs in G and P ri
o is the 2D vector of the spatial coordinates

of the center of receptive field.

10.4 Implementation and Experiment

10.4.1 Feature Detector

In order to accelerate the detector, the distorted patch should not been calculate every

time. We build a patch remap table while load the camera intrinsic parameters, and save

the table so that the process do not wast computation and time with once calculation.

The typical time cost of the process is shown in Table. 10.1. The implementation is based

on the AGAST feature detector from OpenCV 3.01.
1https://opencv.org/

101

(a) The circular patches on the sphere (yellow
circles)

(b) The circular patches are projected to
the spherical images (yellow ellipses) at

different FOV (0◦, 55◦, 110◦, 165◦,
220◦).

Figure 10.6: The circular patches are distorted as ellipses.

The typical result of the feature detection is shown in Fig. 10.8. With the consideration

of the patch distortion and the camera vignetting, more features on the region of wide

filed of view are detected.

The table size is 2× size× row × col.

Table 10.1: Approximated Timing Statistics
Module Build Table Read Table Remove Vignetting Detect

Time Cost(ms) 8174.5 55.4 2.6 21.0

Table 10.2: Performance of Feature Detector
Method FAST AGAST SAGAST
Time Cost (ms) 7.1 16.9 21.0
Number of Feature 2315 2377 3549

The approximated timing statistics of the feature detector is shown in Table 10.1.

And the performance of the feature detector is shown in Table 10.2. The spherical feature

detector is fast enough and satisfy real-time running, and the performance is good enough.

The feature detector implementation is open sourced, called SAGAST2.

2https://github.com/gaowenliang/SAGAST

102

Figure 10.7: The pattern of feature descriptor on the φ = 0 line.

10.4.2 Feature Descriptor

The approximated timing statistics of the feature descriptor is shown in Table 10.4. And

the performance of the feature descriptor is shown in Table 10.3. The spherical feature is

faster with the help of look-up-table (LUT).

The feature match result between a spherical image and a pinhole image by BRISK,

FREAK, ORB, and FSRK are shown in Fig 10.9. Our FSRK feature get more match

and the match is better. And the FSRK feature is rotation invariance and distortion

invariance.

The feature detector implementation is open sourced, called FSRK3.

Table 10.3: Performance of Feature Descriptor
Method Match Number Match Number (with RANSAC)
FREAK(FAST) 156 101
ORB 555 92
BRISK 91 64
FSRK 406 217

3https://github.com/gaowenliang/fsrk

103

(a) Without vignetting removed (b) With vignetting removed

Figure 10.8: The result sample of the feature detector of camera with 240-degree field of
view, same image with Fig. 10.4.

Table 10.4: Time Cost of Feature Descriptor
Method Time Cost (ms) Time Cost per Feature (µs)
FREAK 12.1 13.1
FSRK (without LUT) 3675.6 4457.3
FSRK (with LUT) 41.8 53.5

(a) The feature match result between a spherical image and a pinhole image by BRISK

104

(b) The feature match result between a spherical image and a pinhole image by ORB

(c) The feature match result between a spherical image and a pinhole image by FREAK

105

(d) The feature match result between a spherical image and a pinhole image by FSRK

Figure 10.9: The feature match result between a spherical image and a pinhole image.

106

CHAPTER 11

CONCLUSION

In this work, we present a real-time dual-fisheye visual-inertial dense mapping and au-

tonomous navigation system. The whole system is implemented on a tight size and light

weight quadrotor where all modules are processing onboard and in real time. By properly

coordinating three major system modules: state estimation, dense mapping, and trajec-

tory planning, we validate our system in both cluttered indoor and outdoor environments

via multiple autonomous flight experiments. A tightly-coupled visual-inertial state esti-

mator is developed for providing high-accuracy odometry, which is used for both feedback

control and dense mapping. Our estimator supports self-initialization and is able to online

estimate vehicle velocity, metric scale, and IMU biases. Without any prior knowledge of

the environment, our dense mapping module extracts a 3D omnidirectional information.

After semi-global optimization and post-processing, a dense depth image is calculated and

fed into our uncertainty-aware TSDF fusion approach, from which a live dense 3D map is

produced. Using this map, our planning module firstly generates an initial collision-free

trajectory based on our sampling-based path searching method. Following the trend of

rapid increases in mobile computing power, we believe our minimum sensing sensor setup

suggests a feasible solution to fully autonomous miniaturized aerial robots.

107

REFERENCES

[1] Alexandre Alahi, Raphael Ortiz, and Pierre Vandergheynst. Freak: Fast retina key-

point. In Computer vision and pattern recognition (CVPR), 2012 IEEE conference

on, pages 510–517. Ieee, 2012.

[2] Sergey V Alexandrov, Johann Prankl, Michael Zillich, and Markus Vincze. Cali-

bration and correction of vignetting effects with an application to 3d mapping. In

Intelligent Robots and Systems (IROS), 2016 IEEE/RSJ International Conference

on, pages 4217–4223. IEEE, 2016.

[3] Anup Basu and Sergio Licardie. Alternative models for fish-eye lenses. Pattern

recognition letters, 16(4):433–441, 1995.

[4] Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. Surf: Speeded up robust features.

In European conference on computer vision, pages 404–417. Springer, 2006.

[5] Michael Bloesch, Sammy Omari, Marco Hutter, and Roland Siegwart. Robust visual

inertial odometry using a direct ekf-based approach. In Proc. of the IEEE/RSJ Int.

Conf. on Intell. Robots and Syst., pages 298–304. IEEE, 2015.

[6] Christian Brauer-Burchardt and Klaus Voss. A new algorithm to correct fish-eye-

and strong wide-angle-lens-distortion from single images. In Proc. of the IEEE Intl.

Conf. on Image Processing, volume 1, pages 225–228. IEEE, 2001.

[7] Duane C Brown. Decentering distortion of lenses. Photometric Engineering,

32(3):444–462, 1966.

[8] Michael Calonder, Vincent Lepetit, Christoph Strecha, and Pascal Fua. Brief: Binary

robust independent elementary features. In European conference on computer vision,

pages 778–792. Springer, 2010.

[9] David Caruso, Jakob Engel, and Daniel Cremers. Large-scale direct slam for omnidi-

rectional cameras. In Proc. of the IEEE/RSJ Int. Conf. on Intell. Robots and Syst.,

pages 141–148. IEEE, 2015.

108

[10] Shreyansh Daftry, Sam Zeng, Arbaaz Khan, Debadeepta Dey, Narek Melik-

Barkhudarov, J Andrew Bagnell, and Martial Hebert. Robust monocular flight in

cluttered outdoor environments. arXiv preprint arXiv:1604.04779, 2016.

[11] Jeffrey Delmerico and Davide Scaramuzza. A benchmark comparison of monocular

visual-inertial odometry algorithms for flying robots. In Proc. of the IEEE/RSJ Int.

Conf. on Intell. Robots and Syst., volume 10, page 20, 2018.

[12] Frederic Devernay and Olivier Faugeras. Straight lines have to be straight. Machine

vision and applications, 13(1):14–24, 2001.

[13] Wenchao Ding, Wenliang Gao, Kaixuan Wang, and Shaojie Shen. Trajectory replan-

ning for quadrotors using kinodynamic search and elastic optimization. In Proc. of

the IEEE Intl. Conf. on Robot. and Autom. IEEE, 2018.

[14] Wenchao. Ding, Wenliang. Gao, Kaixuan. Wang, and Shaojie. Shen. Trajectory

replanning for quadrotors using kinodynamic search and elastic optimization. In

Proc. of the IEEE Intl. Conf. on Robot. and Autom., Oct. 2018.

[15] Naser El-Sheimy, Haiying Hou, and Xiaoji Niu. Analysis and modeling of inertial sen-

sors using allan variance. IEEE Transactions on instrumentation and measurement,

57(1):140–149, 2008.

[16] Jakob Engel, Thomas Schöps, and Daniel Cremers. Lsd-slam: Large-scale direct

monocular slam. In Proc. of the Euro. Conf. on Computer Vision, pages 834–849.

Springer, 2014.

[17] Matthias Faessler, Flavio Fontana, Christian Forster, Elias Mueggler, Matia Pizzoli,

and Davide Scaramuzza. Autonomous, vision-based flight and live dense 3d mapping

with a quadrotor micro aerial vehicle. J. Field Robot., 1, 2015.

[18] Gao Fei, WU William, Lin Yi, and Shen Shaojie. Online safe trajectory generation

for quadrotors using fast marching method and bernstein basis polynomial. In Proc.

of the IEEE Intl. Conf. on Robot. and Autom. IEEE, 2018.

[19] Christian Forster, Matia Pizzoli, and Davide Scaramuzza. Svo: Fast semi-direct

monocular visual odometry. In Proc. of the IEEE Intl. Conf. on Robot. and Autom.,

pages 15–22. IEEE, 2014.

109

[20] Friedrich Fraundorfer, Lionel Heng, Dominik Honegger, Gim Hee Lee, Lorenz Meier,

Petri Tanskanen, and Marc Pollefeys. Vision-based autonomous mapping and ex-

ploration using a quadrotor mav. In Proc. of the IEEE/RSJ Intl. Conf. on Intell.

Robots and Syst., pages 4557–4564. IEEE, 2012.

[21] Wenliang Gao and Shaojie Shen. Dual-fisheye omnidirectional stereo. In Intelligent

Robots and Systems (IROS), 2017 IEEE/RSJ International Conference on, pages

6715–6722. IEEE, 2017.

[22] Christopher Geyer and Kostas Daniilidis. A unifying theory for central panoramic

systems and practical implications. In Proc. of the Euro. Conf. on Computer Vision,

pages 445–461. Springer, 2000.

[23] Alessandro Giusti, Jérôme Guzzi, Dan C Cireşan, Fang-Lin He, Juan P Rodríguez,

Flavio Fontana, Matthias Faessler, Christian Forster, Jürgen Schmidhuber, Gianni

Di Caro, et al. A machine learning approach to visual perception of forest trails for

mobile robots. IEEE Robotics and Automation Letters, 1(2):661–667, 2016.

[24] Joshua Gluckman, Shree K Nayar, and Keith J Thoresz. Real-time omnidirectional

and panoramic stereo. In Proc. of Image Understanding Workshop, volume 1, pages

299–303. Citeseer, 1998.

[25] Pascal Gohl, Dominik Honegger, Sammy Omari, Markus Achtelik, Marc Pollefeys,

and Roland Siegwart. Omnidirectional visual obstacle detection using embedded

fpga. In Proc. of the IEEE/RSJ Intl. Conf. on Intell. Robots and Syst., pages

3938–3943. IEEE, 2015.

[26] Richard Hartley and Andrew Zisserman. Multiple view geometry in computer vision.

Cambridge university press, 2003.

[27] Lionel Heng, Bo Li, and Marc Pollefeys. Camodocal: Automatic intrinsic and ex-

trinsic calibration of a rig with multiple generic cameras and odometry. In Proc. of

the IEEE/RSJ Intl. Conf. on Intell. Robots and Syst., pages 1793–1800. IEEE, 2013.

[28] J. A. Hesch, D. G. Kottas, S. L. Bowman, and S. I. Roumeliotis. Consistency

analysis and improvement of vision-aided inertial navigation. IEEE Trans. Robot.,

30(1):158–176, February 2014.

[29] Heiko Hirschmuller. Stereo processing by semiglobal matching and mutual informa-

tion. IEEE Trans. Pattern Anal. Mach. Intell., 30(2):328–341, 2008.
110

[30] Armin Hornung, Kai M Wurm, Maren Bennewitz, Cyrill Stachniss, and Wolfram

Burgard. Octomap: An efficient probabilistic 3d mapping framework based on oc-

trees. Auton. Robots, 34(3):189–206, 2013.

[31] A. S. Huang, A. Bachrach, P. Henry, M. Krainin, D. Maturana, D. Fox, and N. Roy.

Visual odometry and mapping for autonomous flight using an RGB-D camera. In

Proc. of the Int. Sym. of Robot. Research, Flagstaff, AZ, August 2011.

[32] Ciarán Hughes, Patrick Denny, Edward Jones, and Martin Glavin. Accuracy of

fish-eye lens models. Appl. Opt., 49(17):3338–3347, 2010.

[33] Ralph Jacobson, Sidney Ray, Geoffrey G Attridge, and Norman Axford. Manual of

Photography. Taylor & Francis, 2000.

[34] Carlos Jaramillo, Roberto G. Valenti, Ling Guo, and Jizhong Xiao. Design and

analysis of a single-camera omnistereo sensor for quadrotor micro aerial vehicles

(mavs). Sensors, 16(2):7–15, 2016.

[35] Kenichi Kanatani. Calibration of ultrawide fisheye lens cameras by eigenvalue mini-

mization. IEEE Trans. Pattern Anal. Mach. Intell., 35(4):813–822, 2013.

[36] Kenichi Kanatani, Yasuyuki Sugaya, and Yasushi Kanazawa. Ellipse fitting for com-

puter vision: implementation and applications. Synthesis Lectures on Computer

Vision, 6(1):1–141, 2016.

[37] Matthew Klingensmith, Ivan Dryanovski, Siddhartha Srinivasa, and Jizhong Xiao.

Chisel: Real time large scale 3d reconstruction onboard a mobile device using spa-

tially hashed signed distance fields. In Proc. of Robot.: Sci. and Syst., 2015.

[38] Igor Labutov, Carlos Jaramillo, and Jizhong Xiao. Generating near-spherical range

panoramas by fusing optical flow and stereo from a single-camera folded catadioptric

rig. Machine Vision and Applications, 24(1):133–144, 2013.

[39] S. Leutenegger, S. Lynen, M. Bosse, R. Siegwart, and P. Furgale. Keyframe-based

visual–inertial odometry using nonlinear optimization. Int. J. Robot. Research,

34(3):314–334, March 2014.

[40] Stefan Leutenegger, Margarita Chli, and Roland Y Siegwart. Brisk: Binary robust

invariant scalable keypoints. In Computer Vision (ICCV), 2011 IEEE International

Conference on, pages 2548–2555. IEEE, 2011.
111

[41] Stefan Leutenegger, Simon Lynen, Michael Bosse, Roland Siegwart, and Paul Fur-

gale. Keyframe-based visual–inertial odometry using nonlinear optimization. The

International Journal of Robotics Research, 34(3):314–334, 2015.

[42] M. Li and A.I. Mourikis. High-precision, consistent EKF-based visual-inertial odom-

etry. Int. J. Robot. Research, 32(6):690–711, May 2013.

[43] Weiming Li and You Fu Li. Single-camera panoramic stereo imaging system with a

fisheye lens and a convex mirror. Optics Express, 19(7):5855–5867, 2011.

[44] Yi Lin, Fei Gao, Tong Qin, Wenliang Gao, Tianbo Liu, William Wu, Zhenfei Yang,

and Shaojie Shen. Autonomous aerial navigation using monocular visual-inertial

fusion. J. Field Robot., 35(1):23–51, 2018.

[45] Yonggen Ling and Shaojie Shen. High-precision online markerless stereo extrinsic

calibration. In Proc. of the IEEE/RSJ Intl. Conf. on Intell. Robots and Syst., pages

1771–1778. IEEE, 2016.

[46] Yonggen Ling and Shaojie Shen. High-precision online markerless stereo extrinsic

calibration. In Proc. of the IEEE/RSJ Int. Conf. on Intell. Robots and Syst., pages

1771–1778, Oct 2016.

[47] William E Lorensen and Harvey E Cline. Marching cubes: A high resolution 3d

surface construction algorithm. In ACM siggraph computer graphics, volume 21,

pages 163–169. ACM, 1987.

[48] David G Lowe. Distinctive image features from scale-invariant keypoints. Interna-

tional journal of computer vision, 60(2):91–110, 2004.

[49] B. D. Lucas and T. Kanade. An iterative image registration technique with an

application to stereo vision. In Proc. of the Intl. Joint Conf. on Artificial Intelligence,

pages 24–28, Vancouver, Canada, August 1981.

[50] Elmar Mair, Gregory D. Hager, Darius Burschka, Michael Suppa, and Gerhard

Hirzinger. Adaptive and generic corner detection based on the accelerated segment

test. In Proceedings of the European Conference on Computer Vision (ECCV’10),

September 2010.

112

[51] Thomas Mauthner, Friedrich Fraundorfer, and Horst Bischof. Region matching for

omnidirectional images using virtual camera planes. In Proc. of Computer Vision

Winter Workshop. Citeseer, 2006.

[52] Christopher Mei and Patrick Rives. Single view point omnidirectional camera cali-

bration from planar grids. In Proc. of the IEEE Intl. Conf. on Robot. and Autom.,

pages 3945–3950. IEEE, 2007.

[53] Jeff Michels, Ashutosh Saxena, and Andrew Y Ng. High speed obstacle avoidance

using monocular vision and reinforcement learning. In Proc. of the Intl. Conf. on

Machine learning, pages 593–600. ACM, 2005.

[54] Jean-Michel Morel and Guoshen Yu. Asift: A new framework for fully affine invariant

image comparison. SIAM journal on imaging sciences, 2(2):438–469, 2009.

[55] Anastasios I Mourikis and Stergios I Roumeliotis. A multi-state constraint kalman

filter for vision-aided inertial navigation. In Proc. of the IEEE Int. Conf. on Robot.

and Autom., pages 3565–3572. IEEE, 2007.

[56] Richard A Newcombe, Shahram Izadi, Otmar Hilliges, David Molyneaux, David

Kim, Andrew J Davison, Pushmeet Kohi, Jamie Shotton, Steve Hodges, and Andrew

Fitzgibbon. Kinectfusion: Real-time dense surface mapping and tracking. In Proc.

of the Intl. Sym. on Mixed and augmented reality, pages 127–136. IEEE, 2011.

[57] David Nistér. An efficient solution to the five-point relative pose problem. IEEE

transactions on pattern analysis and machine intelligence, 26(6):756–770, 2004.

[58] Kyel Ok, W Nicholas Greene, and Nicholas Roy. Simultaneous tracking and render-

ing: Real-time monocular localization for mavs. In Proc. of the IEEE Intl. Conf. on

Robot. and Autom., pages 4522–4529. IEEE, 2016.

[59] Helen Oleynikova, Zachary Taylor, Marius Fehr, Juan Nieto, and Roland Siegwart.

Voxblox: Incremental 3d euclidean signed distance fields for on-board mav planning.

arXiv preprint arXiv:1611.03631, 2016.

[60] Matia Pizzoli, Christian Forster, and Davide Scaramuzza. Remode: Probabilistic,

monocular dense reconstruction in real time. In Proc. of the IEEE Intl. Conf. on

Robot. and Autom., pages 2609–2616. IEEE, 2014.

113

[61] Tong Qin, Peiliang Li, and Shaojie Shen. Vins-mono: A robust and versatile monoc-

ular visual-inertial state estimator. arXiv preprint arXiv:1708.03852, 2017.

[62] Milad Ramezani, Kourosh Khoshelham, and Clive Fraser. Pose estimation by omni-

directional visual-inertial odometry. Robotics and Autonomous Systems, 2018.

[63] Edward Rosten, Reid Porter, and Tom Drummond. Faster and better: A machine

learning approach to corner detection. IEEE transactions on pattern analysis and

machine intelligence, 32(1):105–119, 2010.

[64] Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary Bradski. Orb: An efficient

alternative to sift or surf. In Computer Vision (ICCV), 2011 IEEE international

conference on, pages 2564–2571. IEEE, 2011.

[65] D. Scaramuzza, M.C. Achtelik, L. Doitsidis, F. Fraundorfer, E.B. Kosmatopoulos,

A. Martinelli, M.W. Achtelik, M. Chli, S.A. Chatzichristofis, L. Kneip, D. Gurdan,

L. Heng, G.H. Lee, S. Lynen, L. Meier, M. Pollefeys, A. Renzaglia, R. Siegwart,

J.C. Stumpf, P. Tanskanen, C. Troiani, and S. Weiss. Vision-controlled micro flying

robots: from system design to autonomous navigation and mapping in GPS-denied

environments. IEEE Robot. Autom. Mag., 21(3), 2014.

[66] Davide Scaramuzza, Agostino Martinelli, and Roland Siegwart. A flexible technique

for accurate omnidirectional camera calibration and structure from motion. In Proc.

of the IEEE Intl. Conf. on Computer Vision Systems, pages 45–45. IEEE, 2006.

[67] Korbinian Schmid, Philipp Lutz, Teodor Tomić, Elmar Mair, and Heiko Hirschmüller.

Autonomous vision-based micro air vehicle for indoor and outdoor navigation. J.

Field Robot., 31(4):537–570, 2014.

[68] Eric L Schwartz. Computational anatomy and functional architecture of stri-

ate cortex: a spatial mapping approach to perceptual coding. Vision research,

20(8):645–669, 1980.

[69] S. Shen, N. Michael, and V. Kumar. Tightly-coupled monocular visual-inertial fusion

for autonomous flight of rotorcraft MAVs. In Proc. of the IEEE Int. Conf. on Robot.

and Autom., Seattle, WA, May 2015.

[70] Stephen M Smith and J Michael Brady. Susan—a new approach to low level image

processing. International journal of computer vision, 23(1):45–78, 1997.

114

[71] Engin Tola, Vincent Lepetit, and Pascal Fua. Daisy: An efficient dense descriptor

applied to wide-baseline stereo. IEEE transactions on pattern analysis and machine

intelligence, 32(5):815–830, 2010.

[72] Bill Triggs, Philip F McLauchlan, Richard I Hartley, and Andrew W Fitzgibbon.

Bundle adjustment—a modern synthesis. In International workshop on vision algo-

rithms, pages 298–372. Springer, 1999.

[73] Zhenfei Yang and Shaojie Shen. Monocular visual–inertial state estimation with

online initialization and camera–imu extrinsic calibration. IEEE Transactions on

Automation Science and Engineering, 14(1):39–51, 2017.

[74] Jure Zbontar and Yann LeCun. Stereo matching by training a convolutional neural

network to compare image patches. J. Mach. Learn. Res., 17(1-32):2, 2016.

[75] Radiant Zemax. Optical design program–user’s manual, 2012.

[76] Ji Zhang and Sanjiv Singh. Loam: Lidar odometry and mapping in real-time. In

Robotics: Science and Systems, volume 2, page 9, 2014.

[77] Fuqiang Zhou, Xinghua Chai, Xin Chen, and Ya Song. Omnidirectional stereo vision

sensor based on single camera and catoptric system. Appl. Opt., 55(25):6813–6820,

2016.

[78] Guyue Zhou, Lu Fang, Ketan Tang, Honghui Zhang, Kai Wang, and Kang Yang.

Guidance: A visual sensing platform for robotic applications. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition Workshops, pages

9–14, 2015.

115

